
Causal Inference on Quantiles in High Dimensions:
A Bayesian Approach

Duong Trinh∗

May 25, 2024

Preprint submitted to Conferences - Click here for the latest version.

Abstract

This paper proposes a novel approach, Bayesian Analog of Doubly Robust (BADR) estimation,
to estimate unconditional Quantile Treatment Effects (QTEs) in observational studies. By
augmenting the proposed estimator with shrinkage priors, this framework can account for high-
dimensional covariates and feature a flexible Bayesian modeling strategy with favorable frequentist
properties in finite samples, even when either the treatment assignment or outcome models are
misspecified. The proposed approach offers a straightforward and adaptable implementation for
incorporating probabilistic machine learning techniques to fit the propensity score and conditional
cumulative distribution function, followed by combining posterior draws. This enables the effective
handling of high-dimensional covariate spaces or nonlinear relationships to achieve better accuracy
and appropriate uncertainty quantification. The simulation results show that BADR estimators
yield a substantial improvement in bias reduction for QTE estimates compared with popular
alternative estimators found in the literature. We revisit the role of microcredit expansion and
loan access on Moroccan household outcomes, demonstrating how the new method adds value in
characterizing heterogeneous distributional impacts on outcomes and detecting changes in overall
economic inequality, which is also appealing to other applied contexts.
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1 Introduction

When evaluating the causal effect of policy interventions, the distributional impact appeals
to researchers and policymakers rather than the average impact alone. It helps to gain more
comprehensive and nuanced understanding of the complex effects, ultimately leading to more effective
decision-making. In many instances, uniform policies may benefit certain individuals while adversely
affecting others. If the effects are considerably heterogeneous, the average treatment effect may not
be a sufficient measure, as it likely masks substantial positive and negative effects. Consequently,
it is crucial to determine whether certain individuals are worse off as a result of the policy. Even if
multiple programs generate positive effects for all individuals, the one that offers the greatest benefits
to those at the lower tail of the distribution of the outcome variable might be the most favorable. To
illustrate, consider two job training programs with identical mean net impact that is positive. The first
program, which increases wages at the bottom of the wage distribution, would be more appreciated
than the second program, which only raises the top of the wage distribution. This necessitates the
advancement of econometric techniques to enable studies on distributional treatment effects in the
presence of heterogeneity. This goal has received special interest and has become increasingly relevant
in economic applications1.

Sets of quantile treatment effects (QTEs) can characterize the heterogeneous impacts of the
treatment on different points of the outcome distribution. With a binary treatment, as originally
defined by Doksum (1974) and Lehmann et al. (1974), QTEs measure the difference between the
unconditional quantiles of the potential outcome under treatment and the potential outcome under
nontreatment. Put differently, this captures any difference between the two cumulative distribution
functions of treated and untreated potential outcomes. Moreover, the quantile method may be
employed, even by those not primarily interested in distributional consequences, to enhance the
robustness of their analysis. This is particularly relevant in light of the well-established fact that
median regression is more resistant to outliers than mean regression, while many economic data sets
involve heavy tails. One notable example in development economics is household welfare measures,
including consumption and business outcomes.

The difference between these two unconditional distributions of the potential outcomes itself might
be appealing to policymakers. This reflects the change in the distribution function as a whole when
the treatment could be exogenously shifted between two distinct counterfactual scenarios: universal
treatment and no treatment. As the entire distribution function often yields insights into inequality or
social welfare analysis, computing QTEs serves as a convenient way to summarise noteworthy aspects.
For instance, this enables the detection of changes in overall inequality in the distribution of outcomes,
which is a critical concern given the potentially negative consequences of social and economic inequality
in the contemporary world2.

By definition, QTEs can reveal heterogeneity in the causal effects on different quantiles. However,
individual results are only interpretable under a rank preservation assumption on the underlying

1A variety of relevant applications include, but are not limited to, financial interventions (Meager 2022; Callaway and
Li 2019), educational subsidies (Duflo, Dupas, and Kremer 2021), public health policies (Schiele and Schmitz 2016), and
local migration incentives (Chetty, Hendren, and Katz 2016; Bryan, Chowdhury, and Mobarak 2014); all entail social
welfare implications and garner substantial attention in public discourse.

2This interest is at the core of the econometric literature strand on distributional counterfactual analysis (see, e.g.,
Firpo and Pinto 2016; Chernozhukov, Fernández-Val, and Melly 2013; Rothe 2010).
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treatment effect distribution. This assumption asserts that an observed individual would maintain
their position (rank) in the distribution regardless of their treatment status. As a result, the set of
quantile treatment effects is equivalent to the quantiles of the distribution of individual treatment
effects. Nonetheless, rank preservation is a strong assumption because it requires the relative value
of the potential outcome for a given individual to be unchanged, whether that individual is treated
or untreated. Even when rank preservation is violated, heterogeneity in the effects across various
quantiles shows evidence of heterogeneity in these individual effects, making QTEs remain a meaningful
parameter for policy purposes (see, e.g., Meager 2022; Angrist and Pischke 2009).

In this paper, the primary focus is on unconditional QTEs, which are separate from conditional
QTEs. Although both are standard parameters of interest in the program evaluation literature, it is
important to highlight the distinction between them. An unconditional (marginal) quantile function
is a one-dimensional function of the quantile level τ only. Defined as the difference between the
unconditional quantiles of the treated and untreated potential outcome distributions, unconditional
QTEs describe the effects of treatment status on the overall outcome distribution without conditioning
on the covariates. In contrast, conditional quantile functions are multi-dimensional, depending on not
only a chosen quantile level but also values of the covariates. Conditional QTEs thereby express the
effects on the outcome distribution within sub-populations characterized by covariate values. More
specifically, an individual may rank high in the unconditional distribution of the outcome, meanwhile
possessing a low rank in the conditional distribution of the outcome. This is possible if that person
has values of observed characteristics that are associated with a large value of outcome overall, yet
within the group of people sharing identical values of the observed characteristics, he or she has a
comparatively low outcome3. Conditional QTEs enable examination of the heterogeneity of the effects
with respect to the observables; however, they might be sensitive to the choice of covariates to be
included. Unconditional QTEs, on the other hand, aggregate the conditional effects across the entire
population, thereby being more easily conveyed to the policymakers and the public, at the cost of not
providing any information about the relationship between the covariates and the outcome. Further
discussion can be found in surveys by Glewwe and Todd (2022) and Frölich and Melly (2013). The
unconditional quantile treatment effects are appropriate estimands to focus on when the ultimate
objective is related to the marginal distribution, for example, the welfare of the (unconditionally)
poor. This unconditional effect has been a central estimand of interest in the literature on micro-credit
expansion and housing outcomes, reinforcing the need for robust methods suited to recovering and
exploring heterogeneity in these effects.

When the target causal estimand is an unconditional quantile treatment effect (QTE), several
identification strategies have been developed in the literature. One common approach relies on the
assumption of exogenous treatment, typically in the form of a randomized controlled experiment where
all participants comply with their treatment assignment. In this ideal scenario, implementing an
unconditional QTE estimator is a straightforward process, similar to estimating the average treatment
effect (ATE) directly from the realized outcomes of control and treatment groups. However, when
such experimental data is unavailable, inferring causal relationships from observational data poses
challenges because the observed treatment status is not assigned randomly. This gives rise to the

3Consider a simple example involving wages and years of education, the median income of all individuals with doctoral
degrees may be greater than the top quantile for high school dropouts, presuming a strong positive association between
education levels and earnings.
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second approach based on the selection-on-observables assumption, which implies that the treatment
is as good as randomly assigned once we condition on observables. It is worth noting that, although
our ultimate goal is to obtain an unconditional QTE, covariate information serves to correctly identify
the unconditional quantiles and remove selection bias.

This paper pursues the identifying assumption of selection-on-observables since it is more relevant
to empirical studies in economics. This is due to the fact that randomized controlled trials (RCTs) are
often intricate and expensive, rendering them infeasible in many cases. As elaborated in the subsequent
sections, employing covariates for the sake of identification involves identifying the entire conditional
cumulative distribution function (CDF) of each potential outcome conditional on potentially high-
dimensional covariates. This CDF is then a nuisance function for the identification of QTEs. More
often than not, applied researchers encounter a vast set of possible covariates, but they are uncertain
about which specific ones are necessary to control for when recovering treatment effects. In addition,
the conditional CDF can itself be a complex function. This necessitates the consideration of high-
dimensional models to estimate quantile treatment effects.

This paper aims to circumvent such obstacles and contribute to the emerging econometric literature
on identification and estimation of QTEs. We propose a novel framework, the Bayesian Analog of
Doubly Robust (BADR) approach, for estimating QTEs in an observational study while accounting
for the presence of potentially high-dimensional covariates. Briefly, we employ Bayesian techniques
to specify and estimate both the treatment assignment and the outcome models, obtaining posterior
draws that are then plugged into the doubly robust estimator for QTEs. This estimator is derived
as the solution to efficient influence functions, leading to its double-robustness property. The
resulting BADR framework comprises two ingredients. First, to effectively accommodate high-
dimensional covariates and nonlinear relationships while achieving proper uncertainty quantification,
we incorporate various Bayesian regularization methods including sparsity-inducing priors and
Bayesian nonparametric methods to generate auxiliary estimators for both the propensity score
and the conditional distribution of the outcome variable. We leverage multiple Bayesian quantile
regressions to address the unique challenge in quantile estimation, which differs from previous studies
on ATE. Second, our method provides double protection against model specification by employing
posterior predictive distributions of parameters from both the treatment assignment and outcome
models. In the absence of high-dimensional covariates, this approach collapses to a doubly-robust
Bayesian estimator for the QTEs without shrinkage priors, which itself has not been explored in
previous literature. Overall, the proposed strategy enables us to obtain QTE estimators which
showcase highly flexible Bayesian modeling manner coupled with favorable frequentist properties in
finite samples.

The advantages of the proposed estimators are demonstrated in Monte Carlo simulations, which
consider difficult settings such as high-dimensional covariate spaces or complex nonlinear effects
of covariates. Through numerical evidence, we observe substantial gains in bias reduction for
QTE estimates across all scenarios, highlighting the strong estimation and inferential features of
our methodology in comparison with the naive estimator and popular approaches considered in the
literature. The proposed methodology introduces a fresh perspective to empirical research by offering a
novel approach for estimating unconditional QTEs in microeconomic applications. The new estimator,
Bayesian Doubly Robust with shrinkage prior, allows us to revisit the microcredit experiment
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originating from the work of Crépon et al. (2015) and explore the impact of household financial access
on household welfare. Unlike previous studies that strictly rely on the randomization of microcredit
availability at the village level, we employ a new causal estimand and identification strategy that
utilizes observed, non-random borrowing patterns at the household level as well as observable
household characteristics. Our findings indicate an overall positive effect, with heterogeneous impacts
across the different points of each outcome distribution of interest. It is anticipated that universal
financial access will result in an ex-post increase in economic inequality among households, mostly
attributed to the significant improvements in consumption and business outcomes at the upper
quantiles. Notably, there is evidence of systematic harm in terms of total profit, as a segment of
households may experience adverse effects that extend the left tail of the distribution to the left.

The remainder of this paper is organized as follows. Section 2 presents a brief review of existing
studies relevant to our paper and situates the paper within existing literature. In Section 3, we formally
define quantile treatment effects in a causal framework along with key identification assumptions. In
Section 4, we present the proposed approach for estimating quantile treatment effects. Next, we
evaluate the performance of our methods using simulations in Section 5 and use the proposed method
to examine the causal impact of loan access on the distribution of household outcomes in Section
6. Finally, we conclude the paper in Section 7 with brief final remarks on the method and policy
recommendations based on our results.
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2 Related Literature

2.1 Causal Inference on Quantiles

Firpo (2007) first considered efficient estimation of unconditional quantile treatment effects (QTEs)
and proposed an inverse propensity weighting (IPW) estimator based on propensity scores estimated
using a sieve approach, specifically a logistic power series approximation. Under strong smoothness
conditions, this IPW estimator is

√
N -consistent4 and achieves the semiparametric efficiency bound,

which is reminiscent of analogous results for the IPW estimator for the average treatment effect
(ATE) with nonparametrically estimated propensities (Hirano, Imbens, and Ridder 2003). Although
these purely weighted methods circumvent the estimation of nuisances that depend on the estimand,
their desired behavior is restricted to certain nonparametric weight estimators and requires strong
smoothness assumptions. Extending the IPW estimator to high-dimensional settings runs into issues
due to the fact that its convergence rate can be slowed down by that of the propensity score and its
error may depend heavily on the particular method used to learn the propensity score. The properties
prohibit the use of general machine learning methods and potentially leading to unstable estimates. In
this sense, Firpo (2007)’s IPW estimator lacks the double robustness and flexibility of our proposal.

Zhang et al. (2012) developed several nonparametric methods that resemble those used for ATE
and proved that the augmented inverse probability weighted (AIPW) estimator, by augmenting a term
that involves the residuals from the outcome regression model, enhances the efficiency of the IPW
estimator. The AIPW estimator is expected to be locally efficient and doubly robust under regularity
conditions. Díaz (2017) proposed a semiparametric approach using targeted maximum likelihood
estimation (TMLE) for marginal quantiles. While sharing the same asymptotic properties as the
standard AIPW, the TMLE estimator demonstrates better finite-sample performance when analyzing
causal effects on the quantiles, similar to improvements in the mean effect (e.g., Van der Laan, Rose,
et al. 2011). Our proposed approach relates to both AIPW and TMLE estimators when solving the
estimating equation derived from the efficient influence function, a core concept for achieving double
robustness. However, Zhang et al. (2012)’s AIPW method assumes strong distributional assumption
(e.g., a normal linear model after a Box-Cox transformation of the outcome for each treatment), limiting
its application to cases of positive outcomes. In contrast, our Bayesian Analog of Doubly Robust
estimation framework employs Bayesian data-adaptive estimation to flexibly fit nuisance functions.
Díaz (2017)’s TMLE approach can be considered quite general and closest to our approach among
frequentist methods. While both opt for estimating the conditional distribution as an important
middle step, the distinct feature of our modeling strategy lies in utilizing multiple Bayesian quantile
regressions and thus can incorporate regularization seamlessly.

Unlike previous studies that did not explicitly consider the case of potentially high-dimensional
covariates, Kallus, Mao, and Uehara (2024) proposed Localized Debiased Machine Learning (LDML)
to enable efficient inference on QTEs in this scenario. For ATE estimation, nuisance functions do
not depend on the estimand and can therefore be estimated independently using flexible, data-driven,
machine learning methods and plugged into the estimating equation. This Debiased Machine Learning
(DML) approach is, however, far more challenging for QTEs estimation, as the efficient influence
function involves nuisances that depend on the estimand of interest. Specifically, DML requires we learn

4N is the sample size.
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the whole conditional cumulative distribution function of a real-valued outcome, potentially conditioned
on high-dimensional covariates, evaluated at the quantile of interest. To obviate this cumbersomeness,
Kallus, Mao, and Uehara (2024) localize the nuisance estimation step to a single initial rough guess
of the estimand, such as the IPW estimate, thereby enabling the standard use of machine learning
methods in this DML-extended framework. Despite also aiming for a flexible modeling manner, our
paper takes a different approach, estimating the whole continuum of the estimand-dependent nuisances
by discretizing a hypothetical continuum of quantile regression estimators. The rationale for our choice
is based on the advantages of Bayesian quantile regression over the frequentist alternative.

While most studies on unconditional QTEs are based on frequentist methods, Xu, Daniels, and
Winterstein (2018) proposed a Bayesian nonparametric approach (BNP) that utilizes a Bayesian
additive regression tree (BART) model to estimate the propensity score, followed by a Dirichlet process
mixture (DPM) of normals model to construct the distribution of potential outcomes conditional on
the estimated propensity score. A key advantage of this approach over frequentist methods is the
simultaneous estimation of multiple quantiles of interest. However, it can be regarded as a propensity
score analysis which avoids directly modeling the conditional distribution of potential outcomes given
the covariates. In contrast, we propose Bayesian Analog of Doubly Robust estimators that can handle
a large number of covariates and are more robust to misspecifications.

2.2 Causal Inference in High Dimensions

This paper fits into a broader literature on high-dimensional causal inference with observational
data. High-dimensional settings are becoming increasingly prevalent, presenting challenges for causal
inference. This problem involves either a large number of available covariates or an outcome model
with an infinite or large number of parameters, such as nonparametric and semiparametric models.
Regularization, a popular technique originally designed to perform prediction in high-dimensional
data analysis, has garnered substantial attention in causal inference. It gives rise to numerous
causal machine-learning techniques which provide high-quality inference on treatment effects (Belloni,
Chernozhukov, and Hansen 2014; Chernozhukov et al. 2018; Farrell 2015; Athey, Imbens, and Wager
2018). While the majority of studies are frequentist regularization-based approaches, there has
been growing interest in adopting Bayesian regularization-based techniques into causal inference, as
Bayesian inference is a natural probabilistic framework for quantifying uncertainty and learning about
model parameters. It is known that many frequentist penalized likelihood estimators can be considered
equivalent to the posterior modes of Bayesian estimators under certain choices of shrinkage priors
such as spike-and-slab prior (Mitchell and Beauchamp 1988; Ishwaran and Rao 2005), Bayesian Lasso
prior (Park and Casella 2008), and Horseshoe prior (Carvalho, Polson, and Scott 2009, 2010).5 Recent
studies have successfully deployed these techniques for confounding adjustment to estimate average
treatment effects in the presence of high-dimensional controls (Antonelli, Parmigiani, and Dominici
2019; Antonelli, Papadogeorgou, and Dominici 2022; Hahn et al. 2018). Bayesian nonparametric
methods are also powerful tools utilized for regularization within the Bayesian paradigm. Among
them, the Bayesian Additive Regression Tree (BART) has emerged as a workhorse widely used for

5Thorough reviews and well-designed simulations could be found in Korobilis and Shimizu (2022), Van Erp, Oberski,
and Mulder (2019) and Polson and Sokolov (2019), who advocate the merits of Bayesian sparsity-inducing priors in
comparison to frequentist counterparts.
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causal inference. Introduced by Chipman, George, and McCulloch (2010; 2006), BART models offer
several advantages over linear models, such as automatic adaptation to nonlinearity. Regarding
implementation, BART is also preferred due to its fast computation, good performance of default
choices of hyperparameters and available software (Linero and Antonelli 2023). When there is sufficient
covariate overlap, BART has been shown to outperform numerous Frequentist machine learning
methods in prediction problems, including random forests. Hill (2011) further proposed the use of
BART in causal inference and demonstrated its efficacy in flexibly modeling the response surface.
To mitigate the regularization-induced confounding issue (Hahn et al. 2018) when using a BART
outcome model, Hahn, Murray, and Carvalho (2020) developed the Bayesian causal forest model, a
BART-based approach that includes a fixed estimate of the propensity score for additional adjustment
in the outcome model. This model yields excellent performance in estimating heterogeneous treatment
effects, making BART a strong default choice for integrating Bayesian nonparametric methods into
causal effect modeling. Subsequent studies by Spertus and Normand (2018) and Xu, Daniels, and
Winterstein (2018) employed BART models to fit the propensity score in the first stage, enabling the
use of Bayesian propensity score analysis to estimate ATE (with high-dimensional data) and QTEs,
respectively.

2.3 Double Robustness

This paper also adds to the development of doubly robust estimators, which have gained extensive use
in the causal inference literature (Scharfstein, Rotnitzky, and Robins 1999; Bang and Robins 2005)
owing to their desirable property of providing consistent inference even under misspecification of either
the treatment assignment or outcome regression models (but not both). For a comprehensive survey
of doubly robust estimators and their properties, we refer interested readers to Daniel (2014).

Doubly robust estimators have been extended to accommodate nonparametric or high-dimensional
settings by enabling data-adaptive estimation of treatment and outcome models. This includes
doubly robust estimators with the group Lasso (Farrell 2015), double machine learning estimators
(Chernozhukov et al. 2018), doubly robust matching estimators (Antonelli et al. 2018) and targeted
maximum likelihood estimators (Van der Laan, Rose, et al. 2011), among others. In these complex
settings, doubly robust estimators offer an extra benefit that parametric convergence rates (

√
N) can

be achieved even when each of the propensity score or outcome regression models converges at slower
rates ( 4√N or faster). Roughly speaking, this echoes the insights from recent advances in the double
machine learning literature (Chernozhukov, Newey, and Singh 2022). Specifically, penalizing either
the propensity score model or the outcome model alone would be insufficient for valid causal inference,
but combining the two as nuisance functions achieves a desirable convergence rate and finite-sample
performance in high-dimensional causal analyses.

There have been attempts to propose doubly robust Bayesian recipes, however, this area is still less
established than its Frequentist counterpart. This is mainly due to a lack of consensus on propensity
score adjustment in the Bayesian causal modeling framework (Robins and Ritov 1997; Robins, Hernán,
and Wasserman 2015; Li, Ding, and Mealli 2023), despite its central role being well recognized in the
literature (Rosenbaum and Rubin 1983; Zigler 2016). Pioneering work on the Bayesian approach
for doubly robust causal inference was done by Saarela, Belzile, and Stephens (2016), in which the
authors formalized the problem and addressed it by combining the posterior predictive distribution of
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parameters with the Bayesian bootstrap. The idea of utilizing posterior predictive distribution was later
advanced in the line of work by Antonelli, Papadogeorgou, and Dominici (2022) and Shin and Antonelli
(2023), who aimed to improve inference for doubly robust estimators for the average treatment effect
(ATE) and the conditional average treatment effect (CATE), respectively. The general strategy
involves estimating both the propensity score and the conditional outcome mean using Bayesian
methods. Posterior draws from their respective posterior predictive distributions are then obtained
and plugged into a doubly robust estimator. While this approach is not fully Bayesian because there is
no joint likelihood for all parameters stated, it effectively integrates Bayesian modeling techniques and
Frequentist inferential procedures for causal analysis with proper uncertainty quantification. These
features are particularly important in high-dimensional scenarios, where handling large numbers of
covariates and quantifying uncertainty can be challenging.

In spite of the progress made in Bayesian literature, most studies have focused on the doubly robust
estimation of either unconditional or conditional average treatment effect. Our paper presents a
distinctive contribution by concentrating on unconditional quantile treatment effects (QTE). This
causal estimand is of independent interest as it offers a different and complementary approach to
uncover treatment effect heterogeneity. Although the conditional average treatment effect (CATE) also
characterizes treatment effect heterogeneity, the effects vary across individuals or subgroups defined
by observed characteristics. In contrast, unconditional QTE focuses on the effect heterogeneity of
the treatment across different outcome ranks without conditioning on individual characteristics or
covariates. Evaluating the impact on the entire outcome distribution of interest makes this approach
particularly relevant to distributional concerns and inequality, offering valuable insights when used
alongside other estimands, such as CATE, to understand the potential consequences of treatments and
policies.

With regard to methodology, we build on the work of Antonelli, Papadogeorgou, and Dominici
(2022), who combined the posterior predictive distribution of nuisance parameters with the Frequentist
doubly robust estimator initially proposed for the ATE. We develop a Bayesian Analog of Doubly
Robust estimators for the QTE, tackling unique challenges that arise in the quantile setting. First, we
address the need for different doubly robust estimators for the QTE compared to the ATE setting by
solving an estimating equation built upon an efficient influence function specifically tailored to quantile
functionals. Second, the QTE estimation problem involves new nuisance parameters, including the
entire conditional cumulative distribution function (CDF) of each potential outcome conditional on
potentially high-dimensional covariates, which increases the computational complexity. We overcome
this hurdle by employing multiple Bayesian quantile regressions that incorporate shrinkage priors. This
helps us explicitly estimate the conditional distribution while accounting for high dimensionality. This
approach has not been pursued in previous studies, making our contribution unique in the literature.
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3 Notation and Causal Estimand

3.1 Notation

Let T and Y be the treatment and outcome of interest, respectively, while X is a p-dimensional vector
of potential controls. Denote Po as the joint distribution of the observed data. Assume that we
observe an independent and identically distributed (i.i.d.) sample Zi = {Yi, Ti,Xi} for i = 1, . . . , N
with empirical distribution PN , where we collect all observations into Z = (Z1, . . . ,ZN ). For t ∈ {0, 1},
let

• Y (t) be the potential outcome for a generic subject under treatment t.

• Ft(y) := P[Y (t) ≤ y] be the cumulative distribution function (CDF) of Y (t), and qt(τ) :=
F−1
t (τ) = inf{y | Ft(y) ≥ τ} be its τ th quantile, where τ ∈ (0, 1).

• Ft|1(y) := P[Y (t) ≤ y | T = 1] be the cumulative distribution function (CDF) of Y (t) given T = 1,
and qt|1(τ) := F−1

t|1 (τ) = inf{y | Ft|1(y) ≥ τ} be its τ th quantile, where τ ∈ (0, 1).

3.2 Causal Estimand

Quantile Treatment Effects (QTEs) are defined as the difference between the τ th quantiles (for a
particular value of τ) of the treated potential outcome distribution and the untreated potential outcome
distribution. For τ ∈ (0, 1),

QTE(τ) := F−1
1 (τ) − F−1

0 (τ) = q1(τ) − q0(τ). (3.1)

Likewise, Quantile Treatment Effects on the Treated (QTET) are defined as the difference between
the quantiles of the distribution of treated potential outcomes for the treated group and the distribution
of untreated potential outcomes for the treated group. For τ ∈ (0, 1),

QTET (τ) := F−1
1|1 (τ) − F−1

0|1 (τ) = q1|1(τ) − q0|1(τ). (3.2)

For identification, a fundamental issue is whether each of the distributions is identified. For the
QTE, some assumptions need to be invoked to identify both F1(y) and F0(y). For the QTET, F1|1(y)
is identified directly from the data because we observe the distribution of treated outcomes for the
treated group. However, identifying F0|1(y) requires some identifying assumptions because we do not
observe untreated potential outcomes for the treated group. We make the following assumptions in
our setup:

1. Unconfoundedness (Selection-on-Observables)

Y (1), Y (0) ⊥⊥ T |X, (3.3)

where ⊥⊥ denotes statistical independence.
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2. Strong Overlap
∃δ ∈ R : 0 < δ < P[T = 1 | X] < 1 − δ < 1. (3.4)

3. Stable Unit Treatment Value Assumption (SUTVA)

Ti = t implies Y obs
i = Y

(t)
i , for t ∈ {0, 1}. (3.5)

The conditional distributions of potential outcomes are therein identified by determining the
conditional distribution of observed outcomes for individuals within each group, as expressed by:
P[Y (t) ≤ y | X] = P[Y ≤ y | T = t,X]. Consequently, the marginal distribution of potential outcomes
can be identified and calculated as

Ft(y) =
∫
P[Y ≤ y | T = t,X]dR(X), for t ∈ {0, 1}, (3.6)

where R(X) is the CDF of covariates X in the population of interest.

## Warning: package ’knitr’ was built under R version 4.2.3

Figure 3.1: Illustration of Quantile Treatment Effects (QTEs). The left-hand figure demonstrates unconditional
distributions of Treated and Untreated potential outcomes, which are colored in green and blue, respectively.
The horizontal distance between these two distributions yields QTEs. For instance, QTE(0.95), QTE(0.5), and
QTE(0.05) are represented by three dashed lines in the figure. QTEs across all values of quantile levels are
plotted in the right-hand figure.
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4 Proposed Estimation Approach

4.1 Justification

With the primary parameter of interest being Quantile Treatment Effects (QTE), we develop the
Bayesian Analog of Doubly Robust (BADR) estimation framework for this target causal estimand.
Our approach draws inspiration from the work by Antonelli, Papadogeorgou, and Dominici (2022),
originally proposed for the Average Treatment Effect (ATE), to combine Bayesian modeling methods for
treatment assignment and outcome models with Frequentist doubly robust estimators using posterior
predictive distributions. By tackling extra unique challenges that arise in the quantile setting, our
framework aims to offer enhanced finite-sample performance without strict reliance on correct model
specifications.

The implementation procedure is straightforward as follows:

1. Specify separate Bayesian treatment assignment and outcome models;
2. Draw the propensity score and the conditional distribution of each potential outcome from their

corresponding posterior predictive distributions; and
3. Plug these values into a doubly robust estimator associated with the parameter of interest.

While our estimation approach is applicable in general, it is particularly useful in handling
high dimensionality, addressing challenges posed by potentially large numbers of controls and the
involvement of the entire conditional potential outcome distribution as a nuisance parameter. In
Section 4.2, we propose a modeling framework in high dimensions that flexibly incorporates Bayesian
regularization techniques. Before doing so, we first establish a foundation by defining the doubly
robust estimator of QTE. Then, we demonstrate a promising avenue for estimation and inference
within a Bayesian framework.

4.1.1 The Doubly Robust Estimator for Quantile Treatment Effects

Let π(X) := P(T = 1 | X; Θπ) be the propensity score (i.e., the probability of receiving active treatment
given covariates X), which is associated with the treatment assignment model; and G(y | t,X) :=
P[Y ≤ y | T = t,X; ΘG] (for t ∈ {0, 1}) be the conditional distributions of Y given the treatment
status and covariates, which is associated with the outcome model. Let Θ = Θπ ∪ ΘG represent the
parameters of the treatment assignment and outcome models. A general QTE estimation problem
involves π(X) and G(y | t,X) as nuisance functions. We denote π̂(X) and Ĝ(y | t,X) as estimators of
π(X) and G(y | t,X) (for t ∈ {0, 1}), respectively.

For a chosen quantile level τ ∈ (0, 1), a doubly robust (DR) estimator of the QTE for binary
treatments is given by

Q̂TE
dr

(τ) = q̂dr1 (τ) − q̂dr0 (τ), (4.1)

where for a sample of size N
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• q̂dr1 (τ) is a DR estimator of the τ -quantile of treated potential outcome and can be derived as the
solution to

N−1∑
i

Ti
π̂(Xi)

[
1{Yi ≤ q1} − Ĝ(q1 | 1,Xi)

]
+ Ĝ(q1 | 1,Xi) = τ. (4.2)

• q̂dr0 (τ) is a DR estimator of the τ -quantile of untreated potential outcome and can be derived as
the solution to

N−1∑
i

1 − Ti
1 − π̂(Xi)

[
1{Yi ≤ q0} − Ĝ(q0 | 0,Xi)

]
+ Ĝ(q0 | 0,Xi) = τ. (4.3)

Formal derivation and discussion regarding q̂dr1 (τ) are presented in Appendix A, where (A.14) is
equivalent to equation (4.2). Estimating equations (4.2) and (4.3) are built upon the efficient influence
function for quantiles of each potential outcome distribution. The efficient influence function captures
the first-order sensitivity of the target parameter to small perturbations in the underlying distributions.
In our estimation problem, which involves two nuisance models – treatment assignment and outcome
– the efficient influence function exhibits a double robustness property, resulting in a doubly robust
estimator. This estimator is consistent provided that either the propensity score π̂(X) or the conditional
outcome distribution Ĝ(y | t,X) is consistent, but not necessarily both.

Estimating equations (4.2) and (4.3) are also closely connected to the Neyman orthogonal moment
conditions, which is extensively leveraged in the debiased machine learning literature (see e.g., Belloni
et al. 2017; Chernozhukov et al. 2018; Kallus, Mao, and Uehara 2024). Neyman orthogonality
is a desirable property that ensures the final estimate of the target parameter remains robust even
when there are small errors in the estimation of nuisance parameters. This property is particularly
relevant when regularization methods are needed to handle high-dimensional covariates in estimating
the nuisances. In such cases, employing Neyman orthogonal moment conditions helps correct for the
first-order biases that may arise from plugging in estimates of the nuisance parameters.

4.1.2 The Bayesian Analog of Doubly Robust Estimator

The population parameters Θ are typically unknown and need to be estimated. In this setting, we
consider a Bayesian framework to estimate the parameters associated to both the treatment assignment
and outcome models. This enables uncertainty in parameter estimation to be directly captured from
the posterior distribution.

Let PΘ|Z denote the posterior distribution, and {Θ(b)}Bb=1 be a sequence of B draws obtained from
this posterior distribution. The point estimator ∆̂ for the estimand of interest ∆ takes a form of the
posterior mean

∆̂ := EΘ|Z[∆(Z,Θ)] ≈ B−1∑
b

∆(Z,Θ(b)), (4.4)

where ∆(Z,Θ(b)) is evaluated using the observed data Z and parameters Θ(b). Therefore, our point
estimator for the QTE at a chosen quantile level τ ∈ (0, 1) is the average value of the quantity in (4.1)
with respect to the posterior distribution of model parameters.

Regarding inference, our variance of interest corresponds to the variance of the estimator’s sampling
distribution and can be defined as follows
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VZ(∆̂) := VZ(EΘ|Z[∆(Z,Θ)]). (4.5)

Variance estimation can be implemented using the nonparametric bootstrap (Tibshirani and Efron
1993) to account for uncertainty in all stages of the estimator. Specifically, L multiple datasets
{Z(l)}Ll=1 are created by sampling with replacement from the empirical distribution of the data.
For each resampled dataset, we re-estimate the posterior distribution of Θ and then recalculate
EΘ|Z[∆(Z,Θ)] accordingly. Finally, we compute variance of this quantity across all bootstrap
samples. It is worth noting that there are two main sources of uncertainty arising throughout our
QTE estimation procedure: first, the sampling variability stemming from the data even if we know
the true outcome and treatment assignment models; second, the variability in parameter estimation
for the propensity score and conditional outcome distributions. An alternative inference scheme
from Antonelli, Papadogeorgou, and Dominici (2022) can be adopted by targeting these two parts
separately

VZ(∆̂) = VZ(l){EΘ|Z[∆(Z(l),Θ)]}︸ ︷︷ ︸
uncertainty stemming

from the data

+ VΘ|Z[∆(Z,Θ)]︸ ︷︷ ︸
uncertainty in estimation
of nuisance parameters

. (4.6)

The first term resembles the true variance, except for the outer moment, which is associated with a
resampled version Z(l) of the original data Z. The posterior samples of parameters Θ estimated using
the original data are maintained, but the point estimator EΘ|Z[∆(Z(l),Θ)] is recalculated for each
resampled dataset. In this way, it captures only the uncertainty of the data, not that resulting from
parameter estimation. In contrast, the second term accounts for the latter type of uncertainty based
on the variability of the full posterior samples of ∆(Z,Θ) given the observed data Z.

4.2 Modeling Framework in High Dimensions

At this juncture, we present the high-dimensional modeling framework we use to provide scalable
estimation algorithms. We employ Bayesian techniques to specify and estimate the treatment
assignment and outcome models separately. To address the challenges posed by high-dimensional
feature spaces, we integrate various Bayesian regularization methods into our proposed framework to
yield estimators of the nuisance functions corresponding to the propensity score and the conditional
distribution of the outcome, denoted as π̂(X) and Ĝ(y | t,X), respectively. For the treatment
assignment model, we adopt Bayesian Additive Regression Trees (BART) priors, whose merits have
been increasingly recognized (see e.g., H. A. Chipman, George, and McCulloch 2010; Hill 2011; Hahn,
Murray, and Carvalho 2020; Linero and Antonelli 2023). For the outcome model, we leverage multiple
Bayesian quantile regressions combined with shrinkage priors to explicitly estimate the conditional
distribution while accommodating potentially high-dimensional covariates. This combined strategy
allows us to develop a flexible and doubly-robust Bayesian estimator with desirable finite-sample
frequentist properties. To the best of our knowledge, this modeling framework has not been previously
pursued in the literature, resulting in a novel approach to estimation of heterogeneous treatment
effects.
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4.2.1 Treatment Assignment Model

We fit a binary Bayesian Additive Regression Trees (BART) model on the observations {Ti,Xi}ni=1 to
model the regression of the treatment assignment on control variables, that is,

π(Xi) = P (Ti = 1 | Xi) = H [fBART (Xi)] , (4.7)

where the link function H is either the CDF of the standard normal distribution for probit BART or
the CDF of the logistic distribution for the logit BART, and

fBART(Xi) =
M∑
m=1

ftree (Xi; Γm, µm) are sum of M Bayesian regression trees.

For m ∈ {1, . . . ,M}, Γm is a tree structure that consists of a set of splitting rules and a set of terminal
nodes; and µ = (µm,1, . . . , µm,bm) is a vector of parameters associated with bm terminal nodes of Γm,
such that ftree(Xi; Γm, µm) = µm,l if Xi is corresponding to the lth terminal node of Γm.

The modeling choices used to implement the BART specification are presented in Appendix B. Once
a sequence of B posterior draws for the underlying BART parameters has been obtained, B posterior
samples of the fitted propensity score {π(b)(X)}Bb=1 can be calculated by

π(b)(Xi) = H

[
M∑
m=1

ftree
(
Xi; Γ(b)

m , µ(b)
m

)]
for i = 1, . . . , N and b = 1, . . . , B. (4.8)

4.2.2 Outcome Model

In contrast to the literature’s extensive coverage of conditional expectation estimation, data-adaptive
estimation of conditional distributions has received considerably less attention. For each t ∈ {0, 1},
we estimate the conditional distribution based on fitted conditional quantiles, employing the sample
analog of the following alternative representation of the conditional distribution

FY |X(y) =
∫ 1

0
1

{
F−1
Y |X(τ) ≤ y

}
dτ =

∫ 1

0
1

{
QY |X(τ) ≤ y

}
dτ, (4.9)

where FY |X(·) and QY |X(·) are conditional distribution and conditional quantiles, respectively.

The corresponding estimator is

F̂Y |X(y) =
∫ 1

0
1

{
Q̂Y |X(τ) ≤ y

}
dτ

≈ ϵ+
∫ 1−ϵ

ϵ
1

{
Q̂Y |X(τ) ≤ y

}
dτ

≈ ϵ+
S∑
s=1

δs1
{

Q̂Y |X(τs) ≤ y
}
,

(4.10)

where Q̂Y |X(τs) = X⊤β̂(τs) can be obtained by estimating S Bayesian quantile regression model for
each {τs}Ss=1, where ϵ ≤ τ0 < . . . < τs ≤ 1 − ϵ and the width δs = τs − τs−1 → 0 as S → ∞. The
second equation is adapted for tail trimming. The third equation aims to avoid estimating the whole
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quantile regression process. Our discretization technique is similar to some previous studies (Belloni
et al. 2017; Chernozhukov, Fernández-Val, and Melly 2013 ; Frölich and Melly 2013), however, we use
the Bayesian quantile regression model rather than Koenker and Bassett (1978)’s quantile regression
from a frequentist viewpoint.

There are several advantages of this computational approach to the problem of estimating conditional
distributions. First, it enables us to leverage the Bayesian quantile regression model, which not
only suits our overall framework but also offers more flexibility than its frequentist counterpart.
Especially, Bayesian shrinkage priors can be readily applied to this parametric quantile model with
minor modifications, thereby handling better high-dimensional covariates. This feature is thoroughly
reviewed by Korobilis and Shimizu (2022). In addition, while a very fine grid for values of τs (i.e., large
S) is often required to gain accuracy, we can make use of parallel computation because the conditional
posteriors are applied in each quantile level independently. While crossing or non-monotonic estimated
quantiles are a valid concern when the regression for each quantile is estimated separately6, the
algorithm presented above is originally designed for the rearrangement of crossing quantiles. This
ensures that our primary objective of interest, the conditional distribution, remains unaffected by
these potential estimation issues.

Further discussion on the Bayesian quantile regression can be found in Appendix D. By drawing
a sequence of B posterior draws for the quantile regression parameters, we can obtain B posterior
samples of the fitted conditional outcome distributions {G(b)(y | 0,X)}Bb=1 and {G(b)(y | 1,X)}Bb=1.

4.2.3 Algorithms for the Bayesian Analog of Doubly Robust (BADR) Estimation

Upon acquiring sequences of B posterior draws of the fitted propensity score {π(b)(X)}Bb=1 and the
fitted conditional outcome distributions {G(b)(y | t,X)}Bb=1 for t ∈ {0, 1}, we can compute B values of
the corresponding Quantile Treatment Effect (QTE) based on the full posterior distribution of these
nuisance parameters. The BADR point estimate of the QTE used in this paper is derived as the
average of these B values. The details of the implementation are presented in Algorithm 1. Utilizing
B posterior samples of QTE, variance estimation can be proceeded according to (4.6).

It is noteworthy that following Algorithm 1 requires solving two estimation equations, (4.2) and
(4.3), B times. This step may lead to intensive computations, particularly when bootstrapping is
involved. An alternative approach to combining the posterior distribution of model parameters and
the doubly robust estimator in Algorithm 1 would replace the nuisance parameters π(X) and G(y | t,X)
with plug-in estimates, such as their posterior means, as outlined in Algorithm 2. This aligns with a
frequentist modeling approach where doubly robust estimators are evaluated using plug-in estimates of
the parameters Θ. While Algorithm 2 uses more compact information, there is a clear computational
gain due to the fact that estimation equations only need to be solved once. The inference procedure
is conducted using the original bootstrap variance estimation in (4.5) for ease of implementation.
Furthermore, our pilot Monte Carlo findings suggest that the alternative estimator yields similar
results.

6The estimated conditional quantile functions may be non-monotonic in the sense that τ̄ > τ̃ does not necessarily
imply Q̂Y |X(τ̄) > Q̂Y |X(τ̃).
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Algorithm 1: Bayesian Analog of Doubly Robust (BADR) estimation for QTEs (Full posterior samples)

1. Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)
2. Result: Q̂TE

dr
(τ)

3. Fit treatment assignment model on {Ti,Xi}ni=1 and obtain B posterior samples {π(b)(X)}Bb=1.
4. for t = 0, 1 do
5. Fit outcome model on {Yi,Xi}i:Ti=t and obtain B posterior samples {G(b)(y | t,X)}Bb=1.
6. end for
7. for b = 1, . . . , B do
8. Solve q(b)

1 (τ), q(b)
0 (τ) based on π(b)(X) and G(b)(y | t,X), according to (4.2) and (4.3).

9. Calculate QTE(b)(τ) = q
(b)
1 (τ) − q

(b)
0 (τ), according to (4.1).

10. end for
11. Calculate ∆̂τ ≡ Q̂TE

dr
(τ) = 1

B

∑B
b=1QTE

(b)(τ), according to (4.4).

Algorithm 2: Bayesian Analog of Doubly Robust (BADR) estimation for QTEs (Posterior means)

1. Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)
2. Result: Q̂TE

dr
(τ)

3. Fit treatment assignment model on {Ti,Xi}ni=1 and obtain B posterior samples {π(b)(X)}Bb=1.
4. for t = 0, 1 do
5. Fit outcome model on {Yi,Xi}i:Ti=t and obtain B posterior samples {G(b)(y | t,X)}Bb=1.
6. end for
7. Derive posterior mean from B posterior samples
8. π̂(X) = 1

B

∑B
b=1 π

(b)(X) and Ĝ(y | t,X) = 1
B

∑B
b=1G

(b)(y | t,X), according to (4.4).
9. Solve q̂dr1 (τ), q̂dr0 (τ) based on π̂(X) and Ĝ(y | t,X), according to (4.2) and (4.3).

10. Calculate ∆̂τ ≡ Q̂TE
dr

(τ) = q̂dr1 (τ) − q̂dr0 (τ), according to (4.1).
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5 Simulation Study

We assess the finite-sample performance of our proposed approach, Bayesian Analog of Doubly Robust
(BADR) estimation, in two simulations with details described below. For each simulation, we specify
the distribution of covariates, the treatment assignment mechanism and the distribution of potential
outcomes. The first simulation focuses on a linear setting with varying feature dimensionality (i.e. with
different covariate dimension to sample size ratio p/N). In the second simulation, we consider a
nonlinear setting and further examine the double robustness of our proposed estimators. Both of
these data designs imply that assignment to the treatment is not completely random, but satisfies the
selection-on-observables assumption. From a theoretical perspective, estimation of treatment effects
that fails to account for the selection problem will inevitably produce inconsistent estimates. We
regard this approach as a benchmark and consider the Naive estimator, which is an estimator of
simple differences between empirical quantiles of treated and control groups, without any correction
for selection bias.

We develop two versions of the estimators which represent our proposed methodology − Bayesian
Doubly Robust estimator (BDR) and extension that adds shrinkage priors (BDRS). Specifically, the
former employs the original Bayesian Quantile Regression while the latter incorporates the Adaptive
Lasso in order to account for sparsity and uncertainty in the outcome model. Both estimators fit
the propensity score using a logit BART model in the first step. Furthermore, we also compare our
proposed method with existing estimators. The Bayesian non-parametric counterpart (BNP) is a fully
Bayesian approach developed in Xu, Daniels, and Winterstein (2018), where the propensity score
is estimated using a logit BART, then the conditional distribution of the potential outcome given a
BART posterior sample of the propensity score in each treatment group is estimated separately using a
Dirichlet process mixture of multivariate normals. We additionally compare three frequentist methods
– the Localized Debiased Machine Learning (LDML) method introduced in Kallus, Mao, and Uehara
(2024), the Targeted Maximum Likelihood Estimation (TMLE) method proposed in Díaz (2017), and
Firpo’s Inverse Probability Weighted (FIPW) method developed in Firpo (2007). Among them, LDML
and TMLE are two estimators that can leverage a variety of machine learning methods. Particularly, in
our simulation exercise, Random Forest is incorporated into LDML and Lasso is integrated into TMLE.
Implementation details of these methods can be found in Appendix E.1.

In each simulation design, we generate 100 synthetic datasets. For each simulated dataset, we
calculate quantile causal effects for 5 quantile levels, τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}, and their 95%
credible (or confidence) intervals (CIs). We compare all the different approaches in terms of average
bias, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).

5.1 Simulation Design 1 (SD1)

We first consider a linear setting in which the mean of potential outcomes is a linear combination of
covariates. We draw 40-dimensional covariates X (p = 40) from the independent standard normal
distributions and allow different sample sizes N ∈ {100, 500, 1000} of the dataset. Accordingly, we
could evaluate the estimation procedure across varying feature dimensionality (i.e. p/N ratio). The
exact form of the true model used to generate synthetic data is as follows:
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T | X ∼ Bern (π(X))

Y (0) | X ∼ N
(
µ(X), 2.52

)
Y (1) | X ∼ N

(
1 + µ(X), 3.752

)
Y = T × Y (1) + (1 − T ) × Y (0)

where π(X) = {1 + exp [−(X1 +X2 +X3)]}−1,

µ(X) = X1 +X2 +X4 +X5.

Under this specification, the unconditional distribution of potential outcomes are Y (0) ∼ N (0, 10.25)
and Y (1) ∼ N (1, 18.0625). Figure 5.1 provides a visual illustration of the corresponding marginal
densities and marginal distributions. As a result, the population quantile treatment effects can be
computed analytically. In particular, the true 10th, 25th, 50th, 75th and 90th QTEs are ∆0.10 =
(−4.447) − (−4.103) = −0.344, ∆0.25 = (−1.866) − (−2.159) = 0.293, ∆0.5 = 1 − 0 = 1, ∆0.75 =
3.866 − 2.159 = 1.707, and ∆0.90 = 6.447 − 4.103 = 2.344, respectively.

Figure 5.1: True marginal densities and marginal distributions of the treated and untreated potential outcomes
in SD1. This design emulates a thought experiment relevant to policy evaluation literature. Hypothetically
assigning the entire population either to treatment or to control induces a change in both location and shape of
the outcome distribution.

Table 5.1 presents point estimates for the quantile treatment effects, along with the average lower
and upper bounds of the corresponding 95% CIs across 100 simulated datasets. These computations are
based on a sample size of N = 1000 and p = 40. It is clear that the Naive method exhibits substantial
bias in its point estimates. This can be attributed to the absence of adjustment for confounders in X,
resulting in poor performance as expected. In comparison, all other methods considered in our current
setting outperform the Naive method in terms of both bias and coverage, proving their effectiveness
in correcting selection bias to some extent.

Our proposed estimators, BDR and BDRS, yield point estimates closest to the true values of QTEs.
Notably, incorporating a shrinkage prior, as in BDRS, further enhances the performance of BDR,
particularly when the object of interest is extreme tails (i.e. 10th and 90th percentiles).
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Table 5.1: Comparison of point estimates for QTEs and 95% CI across 100 replicates
(N = 1000, p = 40)

Percentiles

10th 25th 50th 75th 90th

True QTEs -0.34 0.29 1.00 1.71 2.34

Methods

BDR -0.37
(-1.20, 0.46)

0.30
(-0.38, 0.97)

0.95
(0.37, 1.53)

1.64
(1.00, 2.27)

2.30
(1.50, 3.11)

BDRS -0.34
(-1.16, 0.48)

0.31
(-0.34, 0.96)

0.95
(0.38, 1.53)

1.65
(1.03, 2.27)

2.34
(1.56, 3.12)

BNP 0.92
(0.24, 1.58)

1.55
(1.01, 2.09)

2.24
(1.74, 2.74)

2.93
(2.39, 3.48)

3.59
(2.91, 4.25)

LDML 0.29
(-0.74, 1.31)

0.96
(-0.08, 2.01)

1.63
(0.25, 3.01)

2.35
(-0.00, 4.70)

3.04
(-1.74, 7.82)

TMLE -0.38
(-1.63, 0.86)

0.39
(-0.44, 1.22)

1.07
(0.36, 1.78)

1.75
(0.94, 2.56)

2.32
(1.15, 3.49)

FIPW -0.38
(-1.71, 0.96)

0.27
(-0.93, 1.47)

0.92
(-0.18, 2.02)

1.64
(0.43, 2.85)

2.25
(0.88, 3.63)

Naive 0.94
(0.14, 1.74)

1.58
(0.97, 2.19)

2.25
(1.67, 2.84)

2.97
(2.35, 3.59)

3.65
(2.86, 4.43)

Notes: 95% CIs in parentheses correspond to 95% confidence intervals in Frequentist
approach or 95% posterior credible intervals in Bayesian approach. To estimate these
95% CIs, LDML and FIPW use analytical standard errors, whereas others rely on the
bootstrap method.

Despite sharing a probabilistic approach, the Bayesian non-parametric estimator, BNP, demonstrates
differences from our proposed estimators. While the non-parametric method produces point estimates
slightly better than Naive method, they are still far from the truth. Moreover, the 95% credible
intervals associated with BNP fail to cover the true values of QTEs at any percentile. It aligns with the
observation that BNP exhibits the smallest CI widths among all surveyed methods, posing challenges
in achieving satisfactory coverage rates. It is worth noting that because both BDR and BNP use BART-
logit to model the treatment assignment in the first stage, their distinct performance illustrates the
role of modeling the conditional distribution of potential outcomes given confounders. Intuitively,
BNP avoids directly modeling the conditional distribution of potential outcomes given confounders.
Instead, it is grounded in the balancing property of the propensity score (Rosenbaum and Rubin
1983) to model the conditional distribution of the outcome given the propensity score alone. While
this approach involves estimating a less complex distribution due to having only one binary regressor
(i.e. the estimated propensity score) in the second stage, it becomes skeptical in the case of misspecified
treatment assignment. According to Monte Carlo results in the original paper by Xu, Daniels, and
Winterstein (2018), the inclusion of non-confounders in the treatment assignment equation entails less
precise estimations of QTEs, thereby compromising the performance of the BNP method. Aside from
efficiency loss, finite-sample bias is also a notable drawback of methods targeting a set of variables
that best predict treatment assignment without accounting for how these variables are related to the
outcome, as widely discussed in the context of average treatment effect (Zigler and Dominici 2014;
Belloni, Chernozhukov, and Hansen 2014, etc.).
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Among frequentist approaches, TMLE and FIPW perform reasonably well in terms of bias, although
they do not surpass our proposed estimators. Whilst the bootstrapped standard errors of TMLE are
smaller than the estimated asymptotic standard errors of FIPW7, both methods provide corresponding
95% confidence intervals that contain the truth at any percentile. In contrast, LDML yields point
estimates that are less favorable compared to TMLE and FIPW. However, its asymptotically calibrated
confidence intervals still effectively capture the true QTEs, despite having the widest spans across all
quantile levels.

Figure 5.2: Sampling distributions of bias for 10th, 25th, 50th, 75th, and 90th QTEs across 100 replicates. The
dashed line indicates zero bias.

Boxplots in Figure 5.2 offer more insight on the sampling distributions of bias produced by all
estimators across 100 simulated datasets. When N = 1000, BDR and BDRS showcase nearly zero median
(or mean) bias as well as small variation, outperforming other methods. Their strong performance
persists even in smaller sample size of N = 500. Interestingly, the advantage of BDRS, which is
developed by adopting a hierarchical shrinkage prior, becomes prominent when N = 100. While the
performance of BDR exhibits instability in the presence of high-dimensional covariates, BDRS handles

7Firpo (2007) also recommends bootstrapping as possibly a good alternative to analytical standard errors estimation
in FIPW.
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such settings more effectively, as evidenced by the remarkably reduced box widths observed for all
QTEs of interest.

Table 5.2: Simulation Results for SD1, Average Bias

Estimation Methods

Percentiles N BDR BDRS BNP LDML TMLE FIPW Naive

1000 -0.022 0.001 1.261 0.63 -0.041 -0.034 1.282
500 0.008 0.153 1.261 0.794 0.121 0.102 1.26910th
100 -0.659 0.56 1.267 0.928 0.724 0.901 1.398

1000 0.003 0.017 1.261 0.669 0.1 -0.025 1.288
500 0.047 0.103 1.245 0.764 0.266 -0.035 1.23725th
100 0.265 0.49 1.32 1.03 0.793 0.794 1.296

1000 -0.049 -0.045 1.24 0.632 0.071 -0.08 1.25
500 0.035 0.053 1.209 0.718 0.215 -0.054 1.24150th
100 0.696 0.595 1.284 1.073 0.85 0.852 1.295

1000 -0.071 -0.057 1.228 0.641 0.045 -0.068 1.266
500 0.022 0.071 1.192 0.743 0.172 -0.111 1.22675th
100 0.809 0.574 1.24 0.941 0.673 0.822 1.179

1000 -0.039 -0.006 1.247 0.696 -0.024 -0.089 1.302
500 -0.008 0.096 1.21 0.736 0.094 0.07 1.20690th
100 0.564 0.712 1.293 1.036 0.825 1.093 1.314

Notes: This table displays the average bias across 100 replicates of different
estimation methods. The rows contain results for various percentile levels and for
various sample size N .

Table 5.2 numerically validates our above findings on the pattern of mean bias. Both BDR and BDRS
alternately secure the top rank, exhibiting the smallest average bias across all computed percentiles.
While the challenge of pronounced average bias is inherent in the high-dimensional setting (N = 100
and p = 40), as the p/N ratio decreases, the average bias diminishes relatively fast for QTEs estimated
by methods BDR, BDRS, TMLE, and FIPW. Additionally, LDML also exhibits a declining trend in average
bias, albeit at a slower rate. This phenomenon is not observed with the Naive and BNP estimators.

With respect to the relative Mean Absolute Error (MAE), as presented in Table 5.3, our proposed
approach outperforms all competitors at high percentiles 50th, 75th, and 90th. Meanwhile, BDRS
performs better than BDR in the majority of cases, especially in high-dimensional scenarios. In addition,
line plots of raw MAE in Figure 5.3 illustrate a downward trend for both BDR and BDRS across all
quantile levels as the p/N ratio decreases.

In conclusion, BDR and BDRS demonstrate similarly excellent performance in moderate dimensionality,
thereby facilitating robustness checks in practical use. BDRS even provides extra merit thanks to its
adaptation to high-dimensional settings. It is trivial that the Bayesian Adaptive Lasso in BDRS is
only one option among a wide range of shrinkage priors which can be incorporated into our proposed
framework. Thus, the results from this simulation exercise imply the great potential of our methodology
in flexibly handling high dimensions when estimating quantile treatment effects.
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Table 5.3: Simulation Results for SD1, relative MAE

Estimation Methods

Percentiles N BDR BDRS BNP LDML TMLE FIPW

1000 1.67 1.645 0.99 1.169 1.741 1.741
500 1.571 1.462 0.964 1.078 1.547 1.63410th
100 2.449 1.194 0.945 1.123 1.272 1.346

1000 0.999 0.996 0.969 0.862 0.978 1.077
500 1.135 1.117 1.017 0.947 1.07 1.39125th
100 1.182 0.986 0.93 1 0.992 1.107

1000 0.628 0.628 0.994 0.739 0.64 0.688
500 0.673 0.666 0.976 0.778 0.676 0.69450th
100 0.876 0.81 0.964 0.943 0.876 1.012

1000 0.477 0.479 0.981 0.704 0.513 0.523
500 0.547 0.56 0.981 0.776 0.592 0.60475th
100 0.927 0.771 1.004 0.912 0.81 0.992

1000 0.519 0.529 0.979 0.771 0.539 0.534
500 0.572 0.596 1.002 0.819 0.623 0.66990th
100 1.109 0.822 0.988 0.919 0.851 1.06

Notes: This table displays the relative Mean Absolute Error (MAE) of
different estimation methods across 100 replicates. The rows contain results
for various percentile levels and for various sample size N . The relative
MAE is the MAE in comparison with the Naive method as the benchmark,
where MAE = R−1∑R

r=1 |α̂r − α| and R = 100.

Figure 5.3: Line plots of raw MAE for 10th, 25th, 50th, 75th, and 90th QTEs estimated based on 100 replicates.

5.2 Simulation Design 2 (SD2)

In this simulation design, we explore a setting with nonlinearities, where the mean of potential outcomes
involves polynomial functions of covariates. We draw covariates X with p = 5 from the independent
standard normal distributions. The sample size is fixed at N = 1000 for the remainder of the exercise
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given small sample sizes are likely to be inadequate to explore nonlinearities. The true model for data
generation takes the following form:

T | X ∼ Bern (π(X))

Y (0) | X ∼ N
(
µ(X), 12

)
Y (1) | X ∼ N

(
1 + µ(X), 1.52

)
Y = T × Y (1) + (1 − T ) × Y (0)

where π(X) = {1 + exp [−(−0.6X1 + 0.8X2 + 1.2X3)]}−1,

µ(X) = −X1 +X2
2 + 1.5X3X4 + 1.5X3

5 .

Unlike the first simulation study, the true unconditional density and the true quantiles of the potential
outcomes for this simulation are not analytically achievable. However, the true unconditional quantiles
can be derived approximately from a large sample. At sample size of 107, the approximate values for
true 10th, 25th, 50th, 75th, and 90th QTEs are ∆0.10 = 0.705, ∆0.25 = 0.794, ∆0.5 = 1.022, ∆0.75 = 1.205,
and ∆0.90 = 1.205, respectively.

We introduce two simpler variants of our proposed framework in this simulation exercise. The first
variant consists of Bayesian Outcome Modeling without/with shrinkage priors, represented by BOM
and BOMS estimators. It could be regarded as an outcome-regression-based approach that omits the
treatment assignment model fitted in the initial step of the BADR framework. Instead, it focuses
solely on estimating the conditional distribution by using multiple Bayesian quantile regressions in the
outcome model of each treatment group. Shrinkage priors, akin to the doubly robust approach, can
be readily incorporated. In particular, the BOMS estimator considers the Adaptive Lasso prior. The
second variant is Bayesian Propensity Score Analysis (BPSA), a treatment-assignment-based approach.
Specifically, it involves fitting the treatment assignment using a logit BART model. Subsequently, it
employs multiple Bayesian quantile regressions to model the conditional distribution of the outcome
given the posterior mean of the propensity score in each treatment group. Further details on the
implementation can be found in Appendix E.2.

We evaluate the performance of the methods with respect to two distinct modeling strategies: linear
and nonlinear specification. For the linear specification, we use 5 raw covariates X1, . . . , X5. For the
nonlinear specification, we expand the covariates X to a 55-dimensional space by incorporating full
cubic polynomials along with interaction terms. BDR, BOM, and BNP are excluded as competitors in the
second specification since they are less suitable for high-dimensional contexts.

SD2a. Linear Specification

Table 5.4 illustrates simulation results when 5-dimensional covariates are employed as control variables.
Overall, BDR and BDRS outperform all competing methods, achieving the smallest average bias at 25th

and 75th percentiles. Frequentist methods including TMLE, LDML, and FIPW, individually rank first
once at 10th, 50th, and 90th, respectively. However, each of them is less superior to our proposed
estimators in at least three of the five quantile levels of interest. The Bayesian nonparametric method,
BNP, continues to register the lowest rank, offering only a marginal reduction in bias compared to the
benchmark.
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Table 5.4: Simulation Results for SD2a, Average Bias and relative MAE

Bias MAE

10th 25th 50th 75th 90th 10th 25th 50th 75th 90th

Linear specification
BDR 0.055 0.002 -0.032 -0.008 0.016 1.349 1.049 0.621 0.597 0.781

BDRS 0.061 0.002 -0.030 -0.006 0.024 1.331 1.056 0.624 0.595 0.790
BOM 0.040 0.092 -0.013 -0.094 -0.053 0.926 0.808 0.505 0.559 0.828

BOMS 0.059 0.102 -0.002 -0.076 -0.025 0.924 0.801 0.507 0.558 0.823
BPSA 0.078 -0.042 -0.044 0.061 0.112 0.752 0.945 0.493 0.555 0.725
BNP 0.335 0.368 0.343 0.328 0.284 1.114 1.005 0.861 0.939 1.095

LDML 0.009 0.010 -0.009 0.019 0.163 0.997 0.963 0.584 0.620 0.832
TMLE 0.000 -0.005 -0.022 -0.041 0.025 1.284 1.181 0.657 0.683 1.156
FIPW 0.019 -0.039 -0.034 -0.010 0.014 1.576 1.218 0.671 0.717 1.240

No covariates
Naive 0.468 0.434 0.430 0.377 0.312 1.000 1.000 1.000 1.000 1.000

Notes: This table displays the average bias and the relative Mean Absolute Error (MAE) of
different estimation methods across 100 replicates. The relative MAE is the MAE in comparison
with the Naive method as the benchmark, where MAE = R−1∑R

r=1 |α̂r − α| and R = 100.

Further investigation can unveil the mechanics of our analog doubly robust estimators. It is essential
to note that, by considering only 5 raw covariates X, there is a misspecification in the functional form
of covariates in the outcome equation.

Bayesian Outcome Modeling estimators, BOM and BOMS, inherit the advantages of Bayesian Quantile
Regression and shrinkage priors, as same as our primary approach. Nonetheless, since these estimators
ignore the treatment assignment equation, they exhibit significantly higher average bias than doubly
robust estimators, irrespective of whether penalization in covariate space is introduced or not. In
contrast, by fitting the propensity score, doubly robust estimators gain another protective layer against
misspecification of the outcome. A similar rationale applies to the favorable performance of TMLE, which
is originally a doubly robust estimator from frequentist viewpoints. Other methods, LDML and FIPW,
do not utilize both the whole conditional cumulative distribution function and the propensity score
function as inputs in the doubly robust estimation procedure. However, their reliance on the treatment
assignment equation from the outset makes them less affected by the misspecification of the outcome,
resulting in reasonably good performance.

Bayesian Propensity Score Analysis estimator, BPSA, exhibits lower average bias than both BOM and
BOMS when estimating 25th and 75th QTEs. Nevertheless, its performance is dominated by both BDR
and BDRS in terms of average bias across all evaluated quantile levels. Despite sharing the first stage
with doubly robust estimators when fitting the propensity score by a logit BART model, BPSA then
uses posterior samples of propensity score rather than 5-dimensional covariates as control variables to
estimate the conditional distribution of potential outcomes. Its inferiority compared to BDR underscores
the doubly robust approach, suggesting that using the estimated propensity score alone is less favorable,
especially when the treatment assignment and potential outcome equations contain different sets of
control variables. This observation also aligns with the poor performance of BNP and reinforces our
conclusion from the first simulation exercise.
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SD2b. Nonlinear Specification

Table 5.4 presents simulation results when the 55-dimensional expansion of covariates is utilised as
control variables. It can be seen from Table 5.4 that the performance of BDRS is noticeably improved,
particularly in the extreme tails. BDRS outperforms all frequentist methods in terms of both average
bias and MAE, across most quantile levels except for two instances when it ranks second after TMLE.
This finding again highlights the superiority of BDRS in high dimensions. Continuing our previous
discussion on the double robustness of BDRS, when considering this basis expansion of covariates, the
treatment assignment equation is misspecified to some extent. Because the logit link is maintained
across Bayesian methods, the use of high-order polynomials induces a nonlinear functional form of
X, whereas the true model involves only a linear combination of X1, X2, and X3. BPSA produces
larger average bias than BOMS across almost all quantile levels, other than 25th QTEs, and remains
persistently dominated by BDRS.

Table 5.5: Simulation Results for SD2b, Average Bias and relative MAE

Bias MAE

10th 25th 50th 75th 90th 10th 25th 50th 75th 90th

Nonlinear specification
BDRS -0.014 0.015 0.019 0.027 0.011 0.724 0.859 0.503 0.527 0.550
BOMS 0.041 0.027 0.020 0.015 0.001 0.547 0.709 0.463 0.455 0.441
BPSA 0.140 -0.019 -0.029 0.077 0.099 0.744 0.913 0.494 0.562 0.724
LDML 0.111 0.052 0.047 0.062 0.182 0.880 0.922 0.663 0.683 0.820
TMLE -0.020 0.009 0.023 0.023 0.064 0.728 0.863 0.500 0.533 0.667
FIPW 0.034 0.120 0.090 -0.050 -0.051 1.577 1.290 0.873 0.926 1.298

No covariates
Naive 0.468 0.434 0.430 0.377 0.312 1.000 1.000 1.000 1.000 1.000

Notes: This table displays the average bias and the relative Mean Absolute Error (MAE) of
different estimation methods across 100 replicates. The relative MAE is the MAE in comparison
with the Naive method as the benchmark, where MAE = R−1∑R

r=1 |α̂r − α| and R = 100.

In summary, our proposed doubly robust estimators (BDR and BDRS) consistently surpass at least one
among outcome-regression-based estimators (BOM and BOMS) or treatment-assignment-based estimator
(BPSA) regarding the average bias, when either the outcome equation or treatment equation is
misspecified. By flexibly incorporating shrinkage priors, BDRS outperforms its Bayesian nonparametric
counterpart and all frequentist competitors in high-dimensional settings. This result demonstrates
that our proposed framework features not only adaptability to complexity but also robustness to
misspecification.
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6 Empirical Illustration

6.1 Overview

To demonstrate the applicability and usefulness of our proposed method, we revisit the microcredit
study by Crépon et al. (2015), which was derived from a randomized experiment conducted in Morocco.
The dataset enables us to examine the potential of our approach in two distinct contexts. In the first
setting, we employ the random treatment assignment available in the original research to investigate
the effect of microcredit availability on household borrowing activities, such as the total amount of
loans. Our second setting deviates from randomization – we instead use observational data while
assuming selection-on-observables to evaluate the welfare impact of household loans.

The evaluation was conducted across 162 Moroccan villages that were paired based on their
observable similarities. The intervention was microcredit availability, which was randomly assigned
to one village within each pair. These designated villages constituted the treated group, whereas the
remaining villages formed the control group. In particular, a microfinance institution was established
in the treated villages between 2006 and 2007. In 2009, a follow-up study surveyed 5551 households
in both treated and control villages.

The expansion of microcredit, or access to loans in general, can have potentially heterogeneous
effects on household welfare for several reasons. Firstly, households are diverse in their loan take-up
behavior. They may differentially select into borrowing activities based on their characteristics, leading
to varying outcomes. Those who do not take up loans may end up worse off due to effects on wages
or displacement of informal lending in a dynamic general equilibrium (Kaboski and Townsend 2011;
Morduch 1999). Secondly, among borrowers, the effects may vary due to differences in the efficiency
of loan use and uneven investment opportunities. Indeed, certain households may not experience any
benefits from loans if requirements for investment purposes are restrictive or the term to maturity is too
short (Banerjee 2013). Additionally, multiple microlenders in a community can engage in exploitative
lending practices and “overlending” to households who cannot feasibly repay the loan (Schicks 2013;
Ahmad 2003). This can result in high-productivity borrowers benefiting from the positive impact,
while the most vulnerable borrowers are systematically harmed by the saturation of credit markets. In
summary, there are potential winners and losers to financial market expansion. Even if disadvantaged
groups are small, social welfare consequences could be substantial, particularly if economic inequality
across households is exacerbated (Meager 2022).

The average treatment effect (ATE), which is most commonly utilized in empirical research, cannot
reveal this heterogeneity. Even though loan access might have no impact on average, it could still
have significant positive or negative effects on different types of households. This policy implication is
particularly critical for developing countries. To gain a more comprehensive understanding of causal
effects, it is worthwhile to estimate unconditional quantile treatment effects (QTEs), which offer a valid
measurement that goes beyond the ATE for the entire population. Therefore, our proposed framework
is well suited for this empirical context.

In contrast to the original paper and previous studies that typically rely on randomized controlled
trial (RCT) design and ad hoc selection of baseline covariates, our approach offers more flexible
specifications and data-driven estimation. This enables us to conduct new analyses using either
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data from randomized experiments or observational data, as demonstrated in sections 6.2 and 6.3,
respectively.

Specifically, our general strategy is to initially create a large set of covariates by combining village pair
dummies and full cubic polynomials along with interaction terms of household observed characteristics.
Once collinear columns are removed, this set serves as the baseline specification of X and can be readily
integrated into our Bayesian Analogue of Doubly Robust (BADR) estimation framework. Given the
high dimensionality of this empirical issue, we opt for the Bayesian Doubly Robust estimator with
Adaptive Lasso (BDRS) due to its proven merits in our prior simulation study. To compare our results
with the benchmark, we also include the Naive estimator (Naive) in our analysis.

6.2 Impact of Microcredit Availability on Loan Amount

We begin with the context of random treatment assignment, where our objective of interest is the
effect of microcredit availability on the total amount of loans at the household level. To examine the
balance between the treated and control groups, we select pre-treatment covariates which are observed
characteristics for each household, including head age, education of the head, number of adults, total
number of members in a household, indicators for households doing animal husbandry, doing other
non-agricultural activities, and whether household spouse responded to the survey. Table 6.1 reports
the mean values of these covariates in addition to the outcome and treatment variables, both for the
whole sample and for each of the treated and control groups.

Table 6.1: Summary Statistics of Households

Treated Control Treated – Control

Treatment: Microcredit Availability (RCT) Mean (sd) Mean (sd) Diff.Mean t-statistic

Outcome variable
Total amount of loans (in MAD) 2350.44 (10865.84) 1547.75 (7381.73) 802.69 * 2.54

Baseline covariates
Head age 49.18 (15.83) 48.14 (15.85) 1.05 . 1.95
Head with no education 0.67 (0.47) 0.68 (0.47) -0.01 -0.89
Number of members 5.70 (2.54) 5.64 (2.44) 0.06 0.71
Number of adults 3.81 (1.99) 3.76 (1.91) 0.05 0.83
Number of members aged 6-16 1.22 (1.29) 1.25 (1.26) -0.03 -0.72
Declared animal husbandry activities 0.60 (0.49) 0.55 (0.50) 0.05 ** 2.73
Declared non-agricultural activities 0.17 (0.37) 0.21 (0.41) -0.04 ** -3.15
Spouse of head responded 0.09 (0.29) 0.07 (0.26) 0.02 * 2.27
Member responded 0.05 (0.22) 0.05 (0.21) 0.00 0.62

Data sources: Moroccan household survey (Crépon et al., 2015).

Although the randomization of microcredit availability and the absence of confounding factors
leading to self-selection into treatment is plausible, there are slightly imbalances in covariates across
the two groups. Regarding the unconditional means, the households’ total loan amount for the treated
group (2350.44) significantly exceeds that of the control group (1547.75). The potential heterogeneity
of microcredit motivates us to further investigate this positive average treatment effect using quantile
analysis.
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Figure 6.1: Quantile Treatment Effects (QTEs) of microcredit availability on households’ total loan amount.
The graph on the left demonstrates Naive estimation results. Red bar plots represent naive QTEs, which are
differentials between empirical quantiles of treated group (in green) and control group (in blue). Red dashed line
indicates naive Average Treatment Effects (ATE), which is simple mean difference between these two groups.
Results obtained using BDRS method, QTE point estimates and corresponding 95% CI at five quantile levels
based on 100 bootstrap replications, are plotted as error bars in the right-hand graph.

The results of Quantile Treatment Effects (QTEs), as estimated by the Naive and BDRS methods,
are depicted in Figure 6.1. According to the findings, microcredit expansion has a precise zero effect
below the 75th percentile of the distribution of total loan amounts, but exhibits positive effects above
this threshold. In particular, at the 90th percentile, the positive effect is statistically significant (2300),
contributing to the decomposition of the average treatment effect (802.69). Compared with naive
estimates, BDRS produces similar results, only higher at the 90th percentile; however, the difference
is insignificant. The result is robust after adjusting for the influence of covariate imbalance on the
outcome.

Using the same dataset, findings in Chernozhukov et al. (2017) and Jacob (2021) also document
the heterogeneity of the microcredit availability on total loan amount; however, their estimand is
conditional ATE, different from this paper (QTEs).

6.3 Impact of Loan Access on Household Outcomes

Our second objective is to explore the causal impact of access to loans on household welfare, with a focus
on the distribution of consumption and business outcomes, including total consumption, consumption
of temptation goods, total output, and total profit. Unconditional QTEs provide deeper insights
into the potential heterogeneity of causal effects across the distribution of each outcome interest, as
well as the resulting change in household inequality. The binary treatment we consider is the actual
borrowing status recorded at the household level. Table 6.2 indicates that the difference in mean
between two groups of households (borrowers and non-borrowers) is highly statistically significant
regarding consumption, but not for business outcomes. However, there are two caveats to these naive
ATE estimates.
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Table 6.2: Summary Statistics of Household Outcomes.

Borrowers Non-borrowers Borrowers – Non-borrowers

Outcome variables Mean St.Dev. Mean St.Dev. Diff.Mean t-statistic

(in MAD)
Total Consumption 3268.62 (2956.01) 2863.49 (1792.97) 405.13 *** 3.82
Temptation Goods 312.33 (229.91) 270.31 (219.33) 42.01 *** 4.73
Total Output 32672.06 (85071.58) 30885.38 (85939.63) 1786.68 0.54
Total Profit 10081.86 (37986.07) 8409.95 (45277.88) 1671.91 1.07

Data sources: Moroccan household survey (Crépon et al., 2015). Definition: Total Consumption is
monthly total consumption (in MAD); Temptation Goods is monthly expenditure on temptation and
entertainement(in MAD); Total Output is sum of agricultural, livestock, and non-agricultural business
production over the 12 months prior to the survey (in MAD); Total Profit is total profit of self-
employment activities over the 12 months prior to the survey (in MAD).

Firstly, all outcome variables in this empirical setting exhibit heavy tails and large variability, as
illustrated in histograms in Figure 6.2. This is another motivation for quantile analysis since estimation
results for a set of quantiles would be less susceptible to the influence of outliers than results for the
mean.

Figure 6.2: Histograms of various consumption and business outcomes of borrowing households (in green) and
nonborrowing households (in blue). These graphs display raw data without any truncation applied.

Secondly, the treatment variable – borrowing pattern observed in the dataset – is no longer
randomly assigned among households in the present context. This is confirmed by the imbalances
between these two groups regarding the mean values of the observed characteristics, as shown in
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Table 6.3. Specifically, borrowing households tend to have larger average household sizes. They are
also more inclined to engage in non-agricultural self-employment activities and reside in villages
where microcredit is available. The discrepancy observed is more than what would be expected
by pure chance. Therefore, to identify causal effects using non-experimental data, we pursue the
selection-on-observables assumption. That means, conditional on observed covariates, unmeasured
factors that influence household loan access are independent of household outcomes.

Table 6.3: Covariate Balance between Borrowers and Non-borrowers.

Borrowers Non-borrowers Borrowers – Non-borrowers

Control variables Mean (sd) Mean (sd) Diff.Mean t-statistic

Head age 49.01 (15.62) 48.53 (15.93) 0.49 0.79
Head with no education 0.68 (0.47) 0.68 (0.47) 0.00 0.05
Number of members 6.06 (2.46) 5.54 (2.48) 0.52 *** 5.36
Number of adults 4.02 (2.01) 3.71 (1.92) 0.31 *** 3.99
Number of members aged 6-16 1.36 (1.30) 1.19 (1.27) 0.16 ** 3.23

Declared animal husbandry activities 0.59 (0.49) 0.57 (0.50) 0.02 1.23
Declared non-agricultural activities 0.23 (0.42) 0.18 (0.38) 0.05 ** 3.17
Spouse of head responded 0.05 (0.23) 0.09 (0.29) -0.04 *** -3.96
Member responded 0.05 (0.21) 0.05 (0.22) 0.00 -0.36
Microcredit availability 0.55 (0.50) 0.47 (0.50) 0.07 *** 3.73

Data sources: Moroccan household survey (Crépon et al., 2015).

Whilst a violation of randomization may threaten the performance of the naive estimator, the BDRS
estimator serves as a debiasing device, as illustrated in our simulation using synthetic data. Table 6.4
presents the results for key outcome variables related to household consumption and business. Unlike
the first setting, the BDRS estimates differ considerably from the naive estimates of QTEs because
selection bias is accounted for in our proposed approach. Overall, the point estimates at extreme tails
(10th and 90th percentiles) are fairly imprecise, as indicated by large credible intervals compared to
the other quantile levels. Interestingly, the causal effect in the upper tail remains significantly positive
in most cases.

Regarding total consumption, although all naive estimates of ATE and QTE are positive, estimation
results obtained using the BDRS method reveal notably lower effects across all quantile levels. The effects
of loan access are most pronounced at the 75th and 90th percentiles of the consumption distribution;
however, they are insignificantly positive. While the naive method overestimates the effect of loan
access compared to the BDRS estimator, the upward bias suggests a possible selection-on-gain pattern.
Households inclined to borrow to support their consumption are more likely to gain higher total
consumption when they have financial access.

Further examination of the impact of borrowing on temptation consumption shows a similar upward
bias in the Naive method relative to the BDRS method. The effect is slightly negative at the lowest
percentile (10th) yet clearly insignificant. By contrast, significant positive effects are observed at the
median and higher percentiles. This seems inconsistent with other works that have found a statistically
significant reduction in nonessential expenditures. However, these studies used different treatment
variables and designs compared to this paper.

30



Table 6.4: Quantile Treatment Effects of Loan Access on Household Outcomes.

BDRS Naive

Outcomes Percentiles QTEs Upper bound Lower bound QTEs

10th 20.093 1469.207 -1429.020 232.795
25th 9.242 173.511 -155.027 173.456
50th 79.949 229.587 -69.690 229.753
75th 132.22 273.974 -9.534 286.680

Total Consumption

90th 237.699 543.355 -67.956 685.442

10th -8.69 65.660 -83.040 17.380
25th 13.035 29.871 -3.801 21.725
50th 30.415 45.962 14.868 43.450
75th 47.795 79.225 16.365 60.830

Temptation Goods

90th 78.21 129.145 27.275 78.210

10th 0 13146.948 -13146.948 0.000
25th -330 19.769 -679.769 1093.446
50th 50 1385.992 -1285.992 1787.500
75th 1666 6933.205 -3601.205 2771.616

Total Output

90th 27360 52964.198 1755.802 2744.044

10th -5500 -1183.536 -9816.464 -1142.697
25th -945 158.825 -2048.825 -241.876
50th 561 1117.727 4.273 979.125
75th 1780.769 4273.915 -712.377 549.373

Total Profit

90th 8954.377 16664.233 1244.520 -1086.350

Notes: Upper bound and Lower bound for BDRS method are associated with the estimates
of 95% CI based on 100 bootstrap replications.

With respect to household business outcomes, there is a statistically significant increase in total
output, concentrated only at the highest quantile level. For the rest of the community, specifically
those below the 90th percentile, no systematic change appears to be taking place. Consequently, the
majority of the total output distribution remains unchanged with or without universal access to loans.

Interestingly, there is notable evidence of heterogeneous effects on total profit. The effect on the
median household estimated by the BDRS method is quite close to the naive ATE estimate, which is
moderately positive. In general, access to loans has a favorable impact on households’ profit by shifting
the center of distribution towards the right. However, the impacts exhibited at extreme tails are more
dramatic, with a negative effect at the lowest percentile (10th) and a positive effect at the highest
percentile (90th), and both are statistically significant. If the rank invariance assumption is invoked,
the rightward expansion of the upper tail means that high-profit households gain benefits, while the
leftward expansion of the lower tail means that low-profit households experience loss when loans are
accessible to everyone, compared to the opposite counterfactual scenario. While this assumption
might be difficult to defend given the complexity and nonlinearities inherent to the financial market,
interpretations about the shape change of distribution of household total profit remain valid. There
do exist both winners and losers, even when we cannot identify the specific households that belong to
each group. The outcome distribution disperses wider leading to the exacerbation of inequality across
households.

31



Taken together, the estimated QTE patterns collectively indicate that broadening financial access
is likely to result in an ex-post rise in economic inequality across households. Specifically, the increase
in total output and consumption at the household level is solely attributable to the right tail of
distributions expanding rightward, suggesting that certain households are likely to experience an
improvement in their economic circumstances without incurring any systematic losses from others.
Further investigation of total profit, however, reveals a more nuanced picture. While the overall
impact of access to loans on total profit is positive, indicating a shift towards higher profits for many
households, there is evidence of extreme heterogeneity. The effect is asymmetric as certain households
may experience negative effects on their profits.

Although the treatment variable and identification strategies employed in this setting differ from
those used in Crépon et al. (2015), the findings converge in several respects. In the original paper,
both the reduced-form quantile regressions and instrumental variable (IV) estimates suggest substantial
heterogeneity in the profitability of microfinance investments and emphasize the detrimental effects
on certain households. Specifically, their reduced-form quantile analysis measures Intention-to-Treat
(ITT) effects because the treatment variable is microcredit availability at the village level rather than
actual borrowing at the household level. Additionally, the IV estimates in this study reveal changes in
the unconditional distribution of total profit for those who take up microcredit (i.e. compliers only).
These results are only valid when randomization holds. In contrast, the findings of this paper have
broader implications for the understanding of economic inequality, as we focus on the entire population
of households utilizing non-experimental data and a selection-on-observables assumption.
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Figure 6.3: Quantile Treatment Effects (QTEs) of loan access on various household outcomes. Graph on the
left demonstrates Naive estimation results. Red bar plots represent naive QTEs, which are differentials between
empirical quantiles among borrowing households (in green) and nonborrowing households (in blue). Red dashed
line indicates naive Average Treatment Effect (ATE), which is simple mean difference between these two groups.
Results obtained using BDRS method, QTE point estimates and corresponding 95% CI at five quantile levels
based on 100 bootstrap replications, are plotted as error bars in the right-hand graphs.
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7 Conclusion

The goal of this paper was to address the challenges associated with estimating unconditional
Quantile Treatment Effects (QTEs) in observational studies and to make a contribution to the
burgeoning econometric literature on QTEs as well as causal machine learning. We introduced a novel
approach, Bayesian Analog of Doubly Robust (BADR) estimation, which accounts for potentially
high-dimensional covariates. The framework features a highly flexible Bayesian modeling scheme that
showcases favorable frequentist properties in finite samples, even in the presence of high dimensions
or model misspecifications, which has not been explored in previous literature. This approach, while
not fully Bayesian in nature, offers a straightforward and versatile implementation for integrating
probabilistic machine learning techniques into causal analysis on quantiles, with precise estimation
and reliable uncertainty quantification. These attributes are particularly advantageous in complex,
high-dimensional settings.

The performance of the proposed method was assessed through a simulation study in two different
settings. The first simulation focused on a linear setting with varying feature dimensionality, whereas
the second simulation considered a nonlinear setting and examined the double robustness of the
proposed estimators. Through a comparison with both the naive approach and existing popular
estimators, the simulation results consistently indicated a substantial improvement in bias reduction for
QTE estimates when using the new method. This finding demonstrates that our proposed framework
features not only the ability to adapt to high dimensions and complexity, but also robustness to
misspecification.

The empirical illustration of estimating QTEs of financial access on household outcomes showed
the potential benefits of using causal inference on quantiles to help characterize the heterogeneity or
distributional impact of interventions, which is often appealing to researchers and easily conveyed to
policymakers and stakeholders. Our proposed approach makes this possible even in the absence of
experimental data. We found strong evidence for an overall positive effect yet heterogeneous across
different points of outcome distributions. An ex-post rise in economic inequality among households is
likely to occur, primarily driven by significant improvements in consumption and business outcomes
at the top quantiles. However, certain households may experience adverse effects on their total profit.

An interesting extension of this framework to be explored in the future would be estimating QTEs
when the selection-on-observable assumption is violated, that is, when there exists unmeasured
confounding that drives endogenous selection into treatment. Another aspect is improving bootstrap
inference scheme for doubly robust estimators. Although this objective could be achieved effectively
in the BADR framework for average treatment effect, it is computationally demanding when applied
to quantiles.
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APPENDIX

A Doubly Robust Estimator

To derive the doubly robust estimator for potential quantiles qt (t = 0, 1) as proposed in section 4 in the
paper, we adopt the general strategy outlined by Kennedy (2022) and Hines et al. (2022). Without loss
of generality, the following discussion focuses on the τ -quantile of treated potential outcome, denoted by
q1(τ). Let ψ (Po) represent this estimand of interest, where Po is the true join distribution of observed
data Zi = {Yi, Ti, Xi}. The procedure first requires calculation of the estimand’s efficient influence
function8. Next, an estimator based on the efficient influence function is constructed. Finally, the
asymptotic properties of the doubly robust estimator are briefly verified.

A.1 Deriving Influence Functions

Definition 1. For a given functional ψ(.), the influence function for ψ is the function φ satisfying

∂ψ(P + ϵ(P̃ − P))
∂ϵ

∣∣∣∣
ϵ=0

=
∫
φ(z; P){p̃(z) − p(z)}dz, (A.1)

and
∫
φ(z; P)p(z)dz = 0 for any distribution P and P̃ with densities p and p̃. The left-hand side

measures the sensitivity of ψ(P) to small changes (slight perturbations) in the underlying distribution
P, in the direction of a fixed, deterministic distribution P̃. This quantity is known as the Gateaux
derivative (Serfling 2009).

To simplify the calculation of the efficient influence function, we follow the “point mass
contamination” strategy. In particular, we can isolate φ(z; P) by setting P̃ equal to a point mass at
single observation z̃, denoted by 1z̃(z). Equation (A.1) reduces to

∂ψ(P + ϵ(1z̃ − P))
∂ϵ

∣∣∣∣
ϵ=0

= φ(z̃; P). (A.2)

It should be noted that we focus here on perturbations in the direction parameterised via the one-
dimensional mixture model

Pϵ = ϵ1z̃ + (1 − ϵ)P, ϵ ∈ [0, 1], (A.3)

which is called a parametric submodel. Hence, the efficient influence function at observation z̃ is

φ (z̃; P) = dψ (Pϵ)
dϵ

∣∣∣∣
ϵ=0

. (A.4)

Building on this general definition, we can calculate the efficient influence function in the context of
estimating quantiles of treated potential outcome.

8Efficiency refers to locally minimax semiparametric efficiency
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Theorem 1. (Efficient Influence Function)
Denote by ψo := ψ(Po) the τ -quantile of treated potential outcome under the true join distribution of
observed data. The efficient influence function of ψo is equal to

φ(Z; Po) = − 1
f(ψo)

{
1{T = 1}
π(X) [1{Y ≤ ψo} −G(ψo | 1, X; Po)] +G(ψo | 1, X; Po) − τ

}
, (A.5)

where π(X; Po) = P (T = 1 | X; Po) and G(ψ | 1, X; Po) = P (Y ≤ ψ | T = 1, X; Po) are the propensity
score and the conditional distribution of treated potential outcome, respectively.

Proof of Theorem 1.

• By definition, ψϵ = ψ (Pϵ) satisfies∫∫
1 {y ≤ ψϵ} fϵ (y | 1, x) fϵ (x) dydx = τ. (A.6)

• Denote
Q (ψ, ϵ) =

∫∫
1 {y ≤ ψϵ} fϵ (y | 1, x) fϵ (x) dydx− τ, (A.7)

which results in Q (ψϵ, ϵ) = 0 and Q (ψo, 0) = 0.

• Also
Q (ψ, ϵ) =

∫ ψ

−∞
fϵ (y) dy − τ, (A.8)

hence [
∂Q

∂ψ

]
(ψo,0)

= f (ψo) . (A.9)

• By the Implicit Function Theorem

dψϵ
dϵ

∣∣∣∣
ϵ=0

= −
[
∂Q

∂ψ

]−1

(ψ0,0)
×
[
∂Q

∂ϵ

]
(ψo,0)

= − 1
f (ψo)

× dQ (ψo, ϵ)
dϵ

∣∣∣∣
ϵ=0

(A.10)

• By the Chain Rule

dQ (ψo, ϵ)
dϵ

∣∣∣∣
ϵ=0

= d

dϵ

{∫∫
1 (y ≤ ψo)

fϵ (y, 1, x) fϵ (x)
fϵ (1, x) dydx

} ∣∣∣∣
ϵ=0

=
∫∫

1 (y ≤ ψo)
{

fϵ (x)
fϵ (1, x)

d

dϵ
fϵ (y, 1, x)

∣∣∣∣
ϵ=0

−fϵ (y, 1, x) fϵ (x)
fϵ (1, x)2

d

dϵ
fϵ (1, x)

∣∣∣∣
ϵ=0

+ fϵ (y, 1, x)
fϵ (1, x)

d

dϵ
fϵ (x)

∣∣∣∣
ϵ=0

}
dydx

=
∫∫

1 (y ≤ ψo)
f(y, 1, x)f(x)

f(1, x)

(
1ỹ,t̃,x̃(y, 1, x)
f(y, 1, x) −

1t̃,x̃(1, x)
f(1, x) + 1x̃(x)

f(x) − 1
)
dydx

= 1t̃(1)
π(x̃; Po)

[1 (ỹ ≤ ψo) −G (ψo | 1, x̃; Po)] +G (ψo | 1, x̃; Po) − τ

(A.11)
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• Hence

φ (z̃; Po) = dψ (Pϵ)
dϵ

∣∣∣∣
ϵ=0

= − 1
f (ψo)

{
1t̃(1)

π(x̃; Po)
[1 (ỹ ≤ ψo) −G (ψo | 1, x̃; Po)] +G (ψo | 1, x̃; Po) − τ

}
.

(A.12)

A.2 Efficient Influence Function-Based Estimator

Let Pn denote the empirical distribution from a sample of size n. Denote ho(X,ψ) = G(ψ | 1, X; Po);
and πo(X) = π(X; Po). Then, ho(X,ψ) and πo(X) are function-valued nuisance parameters of the
estimation problem for the τ -quantile of treated potential outcome, which is our target parameter
denoted by ψo := ψ(Po).

The moment condition associated with the efficient influence function in (A.5) to identify the target
parameter value ψo is

E [φ(Z;ho(X,ψo), πo(X)), ψo] = 0, (A.13)

in which the moment has zero derivative with respect to nuisances at ψo, ho and πo. Intuitively,
this moment condition satisfies Neyman orthogonality, that is the first-order insensitivity of target
parameter value to local perturbations of the values of nuisance parameters. This property is desirable
because it helps ensure that the estimation of the parameter of interest remains robust even when
there are small errors or uncertainties in the estimation of nuisance parameters. When regularization
methods are needed to handle high-dimensional covariates or nonlinearities when estimating nuisance
parameters, the use of Neyman orthogonal moment conditions help eliminate the first-order biases
stemming from these plugging-in estimators (see e.g., Belloni et al. 2017; Chernozhukov et al. 2018;
Kallus, Mao, and Uehara 2024).

Therefore, the efficient influence function-based estimator for ψ(Po) is defined as a solution to the
estimating equation

EPn

[
φ(Z; ĥ(X,ψ), π̂(X)), ψ

]
= 0

1
n

n∑
i=1

1{Ti = 1}
π̂(Xi)

[
1{Yi ≤ ψ} − ĥ(Xi, ψ)

]
+ ĥ(Xi, ψ) − τ = 0.

(A.14)

Denote by ψ̂dr the resulting estimator from (A.14). As shown in the following section, ψ̂dr is a doubly
robust estimator, which is consistent provided that either one of nuisance estimators – ĥ or π̂ – is
consistent, but not necessarily both.

A.3 (Frequentist) Asymptotic Properties

Lemma 1. (Double Robustness of Efficient Influence Function)
Let η∗ = (h∗, π∗) with either h∗ = ho or π∗ = πo. Then EPo [φ(η∗, ψo) = 0].

Sketch of Proof for Lemma 1.
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• By the law of iterated expectation

EPo [φ(η∗, ψ)] = − 1
f(ψ)EPo

[
πo
π∗

(
ho,ψ − h∗

ψ

)
+ h∗

ψ − τ

]
= − 1

f(ψ)EPo

[(
πo
π∗ − 1

)(
ho,ψ − h∗

ψ

)
+ ho,ψ − τ

]
.

• When either π∗ = πo or h∗ = ho, substituting ψ by ψo leads to EPo [φ(η∗, ψ)] = 0, and the lemma
follows.

Theorem 2. (Consistency of the Point Estimator)
Under Identifying Assumptions 3.3-3.5 and additional Regularity Conditions, ψ̂dr is consistent if either
nuisance estimator ĥ or π̂ is consistent.

Sketch of Proof for Theorem 2.

• By construction of ψ̂dr in (A.14) we have EPnφ(η̂, ψ̂dr) = 0, where η̂ = (ĥ(X, ψ̂dr), π̂).
• By Lemma 1 we have EPo [φ(η∗, ψo)] = 0.
• An application of Theorem 5.9 of Van der Vaart (2000) yeilds ψ̂dr = ψo + oP(1), thereby ψ̂dr is

consistent. This completes the proof.

A.4 (Bayesian) Posterior Contraction Rates

Let Pn denote the posterior distribution from a sample of size n. Let π = (π1, . . . , πn), h = (h1, . . . , hn)
and let πo and ho denote their unknown, true values. Assume that the posterior distribution of the
propensity score and the conditional distribution contract at rates ϵnt and ϵny, respectively. There
exist two sequences of numbers ϵnt → 0 and ϵny → 0, and constants Mt > 0 and My > 0 such that

sup
Po

EPoPn
( 1√

n
∥π − πo∥ > Mtϵnt | Z

)
→ 0,

sup
Po

EPoPn
( 1√

n
∥h− ho∥ > Myϵny | Z

)
→ 0.

Theorem 3. (Consistency of the Point Estimator)
Under Identifying Assumptions 3.3-3.5 and additional Regularity Conditions, if the contraction
assumptions hold, then

sup
Po

EPoPn
( 1√

n
∥ψ − ψo∥ > Mϵn | Z

)
→ 0,

with ϵn = max(n−1/2, ϵntϵny).

A.5 Regularity Conditions

1. The cumulative distribution function F has compact support [a, b] ⊂ R and is continuously
differentiable on its support with strictly positive derivative f .
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2. The class function {φ(η, ψ) : |ψ − ψo| < δ, ∥hψ − h∗
ψ∥ < δ, ∥πψ − π∗

ψ∥ < δ} is Donsker for some
δ > 0 and such that Po{φ(η, ψ) − φ(η∗, ψo)}2 → 0 as (η, ψ) → (η∗, ψo).
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B Bayesian Additive Regression Tree (BART)

B.1 BART Model Specifications

BART is a nonparametric modeling technique that translates decision tree-based ensemble methods to a
Bayesian framework. H. A. Chipman, George, and McCulloch (2010) present a comprehensive overview
of the method. In essence, BART is a sum-of-trees model with prior distributions are placed over the
parameters including tree depth, splitting variables, splitting values, and terminal node estimates.

Consider the regression problem that predicts a continuous Yi using a p-dimensional vector of
predictors Xi = (Xi1, . . . , Xip)⊤(i = 1, . . . , N), BART model can be expressed as

Yi = fBART(Xi) + ϵi, ϵ
iid∼ N (0, σ2), fBART(Xi) =

M∑
m=1

ftree(Xi; Γm, µm), (B.1)

where ftree(Xi; Γm, µm) is a Bayesian single regression tree; Γm is a tree structure that consists of a
set of splitting rules and a set of terminal nodes; and µ = (µm,1, . . . , µm,bm) is a vector of parameters
associated with bm terminal nodes of Γm, such that ftree(Xi; Γm, µm) = µm,l if Xi is corresponding to
the lth terminal node of Γm.

The prior of BART is specified for three components:

1. The ensemble structure {Γm}Mm=1
Independent regularization prior is placed on Γm. It consists of a Bernoulli distribution with
probability

Pr(split | d) = α(1 + d)−β, α ∈ (0, 1), β ∈ (0,∞), (B.2)

for splitting a node at tree depth d (d = {0, 1, . . .) into two child nodes and two discrete uniform
distributions for selecting a split variable and a split value given the selected split variable. This
regularization prior helps prevent individuals from becoming too influential, thereby enhancing
the overall fit and mitigating the risk of overfitting.

2. The parameters {µm}Mm=1 associated with the terminal nodes given {Γm}Mm=1

µm,l
iid∼ N (0, v) (B.3)

3. The error variance σ2 that is independent with the former two

σ2 ∼ Inv-Gamma (r, s) (B.4)

The process of sampling the posterior distribution is carried out using a Metropolis-within-Gibbs
MCMC sampler, which can also be regarded as a special case of (generalized) Bayesian backfitting
algorithm (Hastie and Tibshirani 2000), to update each tree iteratively. Estimated outcome is achieved
by averaging the posterior samples of fBART(Xi) after a burn-in period.

For binary outcome, the continuous BART model above has been extended to probit BART and
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logit BART, which are specified as follows

P(Yi = 1 | Xi) = H[fBART(Xi)], (B.5)

where fBART(Xi) is the sum-of-trees function in (B.1) and H is the link function with the probit
link for probit BART and the logit link for logit BART. Both of the models maintain the same prior
assigned to the ensemble structure and the parameters of the terminal nodes, i.e. {Γm, µm}Mm=1, but
σ2 is fixed for for the sake of identifiability.

Probit BART employs data augmentation of Albert and Chib (1993) to adapt the Bayesian
backfitting sampler used in continuous BART. This involves introducing a latent variable Y ∗

i such
that Yi = 1{Y ∗

i > 0} for each response variable Yi. At each iteration of the MCMC algorithm, Y ∗
i

is imputed by sampling from the full conditional distribution of Y ∗
i given Yi and other parameters,

which is essentially a truncated normal distribution. The imputed Y ∗
i ’s are then modelled using

the continuous BART model with σ2 set to 1, enabling the completion of the MCMC algorithm by
performing the Bayesian backfitting algorithm of the continuous BART model on the imputed Y ∗

i ’s.

Logit BART also introduces latent variable Y ∗
i that is instead assumed to follow a logistic

distribution, which has a heavier tail than a normal distribution, thus improving estimation for
extreme instances of P (Yi = 1 | Xi). These latent Y ∗

i ’s are sampled using the method described by
Gramacy and Polson (2012). Conditional on the imputed Y ∗

i ’s, the continuous BART model with
given heteroskedastic variance σ2

i ’s are fitted on Y ∗
i ’s, where σ2

i ’s are obtained through the technique
outlined by Robert (1995).

B.2 On Implementation

Computational details and implementation using BART R package can be found in Sparapani,
Spanbauer, and McCulloch (2021). The actual sampling and computation are carried out in C++
code to maximize computational efficiency. Both options for Probit BART and Logit BART are
available in this package, which can be utilised directly to fit the treatment assignment model in our
proposed BADR framework.
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C Bayesian Shrinkage Priors

C.1 Hierarchical Bayes for Linear Regression

Consider the linear regression model

Yi = Xiβ + ϵi, ϵi
iid∼ N(0, σ2) (C.1)

Assuming that interest lies in learning about the regression coefficients β, then a simple hierarchical
specification takes the form

Yi | β, σ2 ∼ N(Xiβ, σ
2), i = 1 . . . , n

βj | τ2, σ2 ∼ N(0, σ2τ2), i = 1 . . . , p
τ2 ∼ F (a, b)

σ2 ∼ 1
σ2

(C.2)

where F (a, b) denotes some distribution function with hyper-parameters a, b. Due to the fact that
choice of τ2 is so crucial for the posterior outcome of βj , the idea behind this hierarchical specification
is to treat the hyper-parameter τ2 as a random variable and learn about it via Bayes Theorem.

C.2 Bayesian Shrinkage Priors

The major goal of shrinkage priors is to shrink small coefficients to zero while maintaining true large
coefficients, especially in high-dimensional settings. The possible variation in shrinkage amounts among
those priors depends on their specific designs. In particular, the sharper the peak is around zero, the
stronger shrinkage for small coefficients. Also, the heavier the tail, the lighter the shrinkage for large
coefficients.

Bayesian Lasso

The Bayesian counterpart of the Lasso penalty is Laplace prior, which was first proposed by Park and
Casella (2008). The Bayesian Lasso can be obtained as a scale mixture of a Normal density with an
Exponential density as below:

βj | τ2
j , σ

2 ∼ N
(
0, σ2τ2

j

)
τ2
j | λ2 ∼ Exp

(
λ2

2

)
, for j = 1, . . . , p

λ ∼ half-Cauchy(0, 1)

σ2 ∼ 1
σ2

(C.3)
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Integrating τ2
j out leads to Double-exponential9 or Laplace priors on the regression coefficients, i.e.,

βj | λ, σ ∼ Double-exponential
(

0, σ
λ

)
, for j = 1, . . . , p (C.4)

Although this version of Bayesian Lasso is the most popular form in literature so far; there are also
some alternative formulations suggested by Hans (2009), Mallick and Yi (2014) and Alhamzawi and
Taha Mohammad Ali (2020).

In addition to the overall shrinkage parameter λ, the Lasso prior has an additional predictor-specific
shrinkage parameter τj . Therefore, the Lasso prior is more flexible than the Ridge prior, which only
relies on the overall shrinkage parameter.

Horseshoe prior

A novel shrinkage prior in the Bayesian literature is the horseshoe prior Carvalho, Polson, and Scott
(2010)10. This prior is particularly attractive for sparse signal recovery.

βj | τ2
j ∼ N

(
0, τ2

j

)
τj | λ ∼ half-Cauchy(0, λ), for j = 1, . . . , p
λ | σ ∼ half-Cauchy(0, σ)

(C.5)

The half-Cauchy prior can be written as a mixture of inverse Gamma densities11 (Makalic and Schmidt
2015), so that the horseshoe prior in Equation (C.5) can be equivalently specified as:

βj | τ2
j ∼ N

(
0, τ2

j

)
τ2
j | ω ∼ Inv-Gamma

(1
2 ,

1
ω

)
ω | λ2 ∼ Inv-Gamma

(1
2 ,

1
λ2

)
λ2 | γ ∼ Inv-Gamma

(1
2 ,

1
γ

)
γ | σ2 ∼ Inv-Gamma

(1
2 ,

1
σ2

)
(C.6)

An expression for the marginal prior of the regression coefficients βj is not analytically tractable, but
a tight lower bound Carvalho, Polson, and Scott (2010) can be used instead.

9Mathematical representation:∫ ∞

0

1√
2πσ2sj

e

(
−

β2
j

2σ2sj

)
λ2

2 e
− λ

2sj dsj = λ

2
√

σ2
e−λ|βj |/

√
σ2

10Note that Carvalho, Polson, and Scott (2010) explicitly include the half-Cauchy prior for λ in their specification,
thereby implying a full Bayes approach. This formulation results in a horseshoe prior that is automatically scaled by the
error standard deviation σ.

11If x2 | z ∼ inv-Gamma (1/2, 1/z) and z ∼ inv-Gamma
(
1/2, 1/α2) then x ∼ C+(0, α)
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− log p (βi | λ) ≥ − log log
(

1 + 2λ2

β2
j

)
(C.7)

The key features for the appealing performance of horseshoe prior are its Cauchy-like tails and an
asymptote at origin (unique advantage), which make horseshoe adaptive to sparsity and robust to
large signals so outperform other shrinkage priors we have discussed.

In the search for intuitive reasons, we consider a common framework of shrinkage rules. Define κj =
1/(1+τ2

j ), then κj is a random shrinkage coefficient in [0, 1]. Under a multivariate normal scale mixture
prior (i.e. the general form of all shrinkage priors we are discussing), the posterior mean can be written
as a linear function of the observation:

E [βj | Yj ] = {1 − E [κi | Yj ]}Yj (C.8)

Hence, E [κi | Yj ] implies the amount of weight that the posterior mean for βj places on 0 once the data
have been observed. A shrinkage coefficient κj that is close to zero leads to virtually no shrinkage,
thus describes signals. A shrinkage coefficient κj that is close to one leads to nearly-total shrinkage,
thus describes noises. Intuitively speaking, the behavior of a priori p(κj) near κj = 1 will control the
robustness of signal at tail, while near κj = 0 will control the shrinkage of noise toward 0. Because
of difference choice of p(τj), each type of shrinkage prior has distinct p(κj) reflecting its attempt to
separate signal and noise. For horseshoe prior, the attempt is even implied in its name, which arises
from the fact that for fixed values λ = σ = 1, p(κj) is similar to a horseshoe-shaped Beta (1/2, 1/2).
This prior is symmetric and unbounded at both 0 and 1; thereby, small coefficients (noises) are heavily
shrunken towards zero while substantial coefficients (signals) remain large. None of these common
shrinkage priors above shares this characteristic. For instance, the Laplace prior, where p(κj) is
bounded at both 0 and 1, tends to over-shrink strong signals yet under-shrink noises. Carvalho, Polson,
and Scott (2009), Carvalho, Polson, and Scott (2010) provide more explanation for other priors.

In fact, unlike local shrinkage priors above, the horseshoe prior is a member of a wider class of global-
local shrinkage priors (Polson and Scott 2010; Bhadra et al. 2019) because it enables a clear separation
between global and local shrinkage effects. Put another way, this class of priors adapt to sparsity by
a global shrinkage parameter and recover signals by a local shrinkage parameter.
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D Bayesian Quantile Regression (BQR)

D.1 Bayesian Quantile Regression

Consider the linear quantile regression model (Koenker and Bassett 1978) at a given quantile level
τ ∈ (0, 1)

Qτ (Y | X) = Xβ(τ), (D.1)

The quantile specific coefficient β(τ) can be consistently estimated by

β̂(τ) = argmin
β

n∑
i=1

ρτ (Yi − Xiβ) , (D.2)

where ρτ (u) = u (τ − 1{u < 0}) is the quantile loss function. As this functional form is an asymmetric
L1 loss function proportional to the negative log density of the asymmetric Laplace distribution (ALD),
the connection allows researcher to recast the quantile regression as a maximum likelihood problem of
the linear model Yi = Xiβ(τ) + ϵi,(τ) where ϵi,(τ) ∼ ALD

(
τ, 0, σ(τ)

)
12. The working likelihood is of the

form
f
(
Y | X, β(τ), σ(τ), τ

)
= τn(1 − τ)n

σn(τ)
exp

{
−

n∑
i=1

ρτ (Yi − Xiβ)
σ(τ)

}
. (D.3)

The asymmetric Laplace distribution is known to be expressible as a scale mixture of normals (Kotz,
Kozubowski, and Podgorski 2012), we thus can rewrite ϵi,(τ) as follows

ϵi,(τ) = θ(τ)zi,(τ) + κ(τ)
√
σ(τ)zi,(τ)ui, with θ(τ) = 1 − 2τ

τ(1 − τ) and κ2
(τ) = 2

τ(1 − τ) ,

where zi,(τ) = σ(τ)ζi,(τ) with ζi,(τ) ∼ Exp(1), and ui ∼ N(0, 1).

As a result, the Bayesian quantile regression model has the following representation

Yi = Xiβ(τ) + θ(τ)zi,(τ) + κ(τ)
√
σ(τ)zi,(τ)ui, for i = 1, . . . , n. (D.4)

This leads to the following likelihood function:

f
(
Y | X, β(τ), σ(τ), z(τ), τ

)
∝ exp

{
−

n∑
i=1

(Yi − Xiβ(τ) − θ(τ)zi,(τ))2

2κ2
(τ)σ(τ)zi,(τ)

}
n∏
i=1

1
√
σ(τ)zi,(τ)

. (D.5)

12ϵi,(τ) follows asymmetric Laplace distribution with density

fALD
(
ϵ(τ)
)

= τ(1 − τ)
σ(τ)

exp
{

−ρτ

(
ϵ(τ)
)

/σ(τ)
}

.
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We assume the priors as below (Kozumi and Kobayashi 2011)

β(τ) ∼ N
(
0,Σ0,(τ)

)
, (D.6)

zi,(τ) ∼ Exp
(
σ(τ)

)
∝ σ−1

(τ)exp
{

−σ−1
(τ)zi,(τ)

}
∀i = 1, . . . , n, (D.7)

σ(τ) ∼ Inv-Gamma
(
r0,(τ), s0,(τ)

)
∝
(
σ−1

(τ)

)r0,(τ)+1
exp

{
−s0,(τ)σ

−1
(τ)

}
, (D.8)

where for simplicity, Σ0,(τ) = Dλ,(τ) = λ× Ip where λ is fixed and known for all τ .

The conditional posteriors are of the form

β(τ) | • ∼ Np

(
µβ,(τ),Σβ,(τ)

)
, (D.9)

zi,(τ) | • ∼ GIG
(1

2 , ai,(τ), bi,(τ)

)
∝ z

− 1
2

i,(τ)exp
{

−1
2
(
ai,(τ)zi,(τ) + bi,(τ)z

−1
i,(τ)

)}
, ∀i = 1, . . . , n, (D.10)

σ(τ) | • ∼ Inv-Gamma
(
rσ,(τ), sσ,(τ)

)
∝
(
σ−1

(τ)

)rσ,(τ)+1
exp

{
−sσ,(τ)σ

−1
(τ)

}
, (D.11)

where
Σβ,(τ) =

(
X⊤U−1X + Σ−1

0,(τ)

)−1
and µβ,(τ) = Σβ,(τ) × X⊤U−1

(
Y − θ(τ)z(τ)

)
,

U =
(
σ(τ)κ

2
(τ)

)
× diag

(
z(τ)

)
, z(τ) =

(
z1,(τ), . . . , zn,(τ)

)′

ai,(τ) = 1
σ(τ)

(
2 +

θ2
(τ)
κ2

(τ)

)
and bi,(τ) =

(
Yi − Xiβ(τ)

)2

σ(τ)κ
2
(τ)

,

rσ,(τ) = r0,(τ) + 3n
2 and sσ,(τ) = s0,(τ) +

n∑
i=1

(
Yi − Xiβ(τ) − θ(τ)zi,(τ)

)2

2κ2
(τ)zi,(τ)

+
n∑
i=1

zi,(τ).

D.2 Bayesian Quantile Regression with the Adaptive Lasso

Bayesian Quantile Regression with the Adaptive Lasso is a Bayesian hierarchical model given by

Yi = Xiβ(τ) + θ(τ)zi,(τ) + κ(τ)
√
σ(τ)zi,(τ)ui, for i = 1, . . . , n, (D.12)
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ui ∼ N(0, 1), (D.13)

zi,(τ) ∼ Exp
(
σ(τ)

)
∝ σ−1

(τ)exp
{

−σ−1
(τ)zi,(τ)

}
∀i = 1, . . . , n (D.14)

βj,(τ), vj,(τ) | σ(τ), λ
2
j,(τ) ∼ 1√

2πvj,(τ)
exp

{
−
β2
j,(τ)

2vj,(τ)

}
σ−1

(τ)
2λ2

j,(τ)
exp

 −σ−1
(τ)

2λ2
j,(τ)

vj,(τ)

 , (D.15)

λ2
j,(τ) ∼ Inv-Gamma

(
c0,(τ), d0,(τ)

)
∝
(

1
λ2
j,(τ)

)c0,(τ)+1

exp
{

−
d0,(τ)
λ2
j,(τ)

}
, (D.16)

σ(τ) ∼ Inv-Gamma
(
r0,(τ), s0,(τ)

)
∝
(
σ−1

(τ)

)r0,(τ)+1
exp

{
−s0,(τ)σ

−1
(τ)

}
(D.17)

The conditional posteriors (Alhamzawi, Yu, and Benoit 2012) are of the form

zi,(τ) | • ∼ GIG
(1

2 , ai,(τ), bi,(τ)

)
∝ z

− 1
2

i,(τ)exp
{

−1
2
(
ai,(τ)zi,(τ) + bi,(τ)z

−1
i,(τ)

)}
, ∀i = 1, . . . , n, (D.18)

βj,(τ) | • ∼ N
(
µβj ,(τ),Σβj ,(τ)

)
, ∀j = 1, . . . , p, (D.19)

vj,(τ) | • ∼ GIG

1
2 ,

σ−1
(τ)

λ2
j,(τ)

, β2
j,(τ)

 ∝ v
− 1

2
j,(τ)exp

−1
2

 σ−1
(τ)

λ2
j,(τ)

vj,(τ) + β2
j,(τ)v

−1
j,(τ)

 , (D.20)

σ(τ) | • ∼ Inv-Gamma
(
rσ,(τ), sσ,(τ)

)
∝
(
σ−1

(τ)

)rσ,(τ)+1
exp

{
−sσ,(τ)σ

−1
(τ)

}
, (D.21)

λ2
j,(τ) | • ∼ Inv-Gamma

(
c0,(τ) + 1, d0,(τ) + σ−1

(τ)vj,(τ)/2
)
, (D.22)

where

ai,(τ) = 1
σ(τ)

(
2 +

θ2
(τ)
κ2

(τ)

)
and bi,(τ) =

(
Yi − Xiβ(τ)

)2

σ(τ)κ
2
(τ)

,

Σβj ,(τ) =
[(
σκ2

(τ)

)−1 n∑
i=1

x2
ijz

−1
i,(τ) + v−1

j,(τ)

]−1

,

µβj ,(τ) = Σβj ,(τ)
(
σκ2

(τ)

)−1 n∑
i=1

Yi − θ(τ)zi,(τ) −
p∑

k=1,k ̸=j
xijβj,(τ)

x2
ijz

−1
i,(τ),

rσ,(τ) = r0,(τ) + 3n
2 + p and sσ,(τ) = s0,(τ) +

n∑
i=1

(
Yi − Xiβ(τ) − θ(τ)zi,(τ)

)2

2κ2
(τ)zi,(τ)

+
n∑
i=1

zi,(τ) +
p∑
j=1

vj,(τ)
2λ2

j

.

D.3 On Implementation

The bayesQR R package (Benoit and Van den Poel 2017) provides the implementation of efficient
Gibbs sampler for both Bayesian Quantile Regression and Bayesian Quantile Regression with the
Adaptive Lasso outlined above. In addition, the core procedure is programmed in Fortran to speed up
the computational time. Therefore, this package can be utilised straightforward to estimate multiple
conditional quantiles, which then be used to approximate the condistional distributions of potential
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outcomes in our proposed BADR framework.

Alternatively, Variational Inference algorithm could be used for Bayesian quantile regression
with/without the regularisation (Lim et al. 2020; Guo 2019), which helps improving the speed of
Gibbs sampling while maintaining a comparable accuracy in terms of MSE.
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E Implementation of Other Estimators in Simulation Study

E.1 Existing Approaches

Bayesian non-parametric method (BNP)

Bayesian non-parametric (BNP) method (Xu, Daniels, and Winterstein 2018) is a fully Bayesian
nonparametric (BNP) approach to estimate QTEs. The estimation procedure includes three steps.
First, the propensity score is estimated using a logit BART model. Then, the conditional distribution
of the potential outcome given a BART posterior sample of the PS in each treatment group
is modelled separately using a Dirichlet process mixture (DPM) of multivariate normals model.
Finally, marginalizing the estimated conditional distribution over the population distribution of the
confounders using Bayesian bootstrap (Rubin 1981). Details of implementation using BNPqte R
package can be found in Luo and Daniels (2021).

Algorithm E.1: BNP Approach to Estimate QTEs

1. Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)
2. Result: Q̂TE(τ)
3. Fit a binary BART model on {Ti, xi}ni=1 and obtain K posterior samples {H−1(π{k}

i )}n,Ki,k=1
4. Create a set of grid points of Y values: (q1, . . . , qS)
5. Set ñ− n and {H−1[π{k}(x̃ĩ)]}

ñ,K

ĩ,k=1 = {H−1(π{k}
i )}n,Ki,k=1

6. for k = 1, . . . ,K do
7. for t = 0, 1 do
8. Fit a DPM of bivariate normals on {Yi, H−1(π{k}

i )}i:Ti=t

9. Use Blocked Gibbs sampler to obtain L posterior samples
10. Calculate {F {kl}(qs | H−1[π{k}(x̃ĩ)], T = t)}ñ,S,L

ĩ,s,l=1
11. end for
12. Sample

(
u

{k}
1 , . . . , u

{k}
ñ

)
from Dir(1, . . . , 1)

13. for l = 1, . . . , L do
14. Calculate the CDF of Y (t) as follows:

F
{kl}
t (qs) =

ñ∑
i=1

u
{k}
i F {kl}(qs | H−1[π{k}(x̃ĩ)], T = t), where 1 ≤ s ≤ S, t ∈ {0, 1}

15. Find a grid point q{kl}
t,τ such that F {kl}

t (q{kl}
t,τ ) = τ for t ∈ {0, 1}

16. The τ th quantile from the CDF F
{kl}
t (.) is q{kl}

t,τ for the group T = t

17. end for
18. end for
19. The estimated CDF of Y (t) on a grid point qs is Ft(qs) = 1

KL

∑K,L
k,l=1 F

{kl}
t (qs), where t ∈ {0, 1}.

20. The estimated τ th quantile for the group T = t is 1
KL

∑K,L
k,l=1 q

{k,l}
t,τ , where t ∈ {0, 1}.

21. The estimated τ th QTE is ∆̂τ = Q̂TE(τ) = 1
KL

∑K,L
k,l=1(q{k,l}

1,τ − q
{k,l}
0,τ )
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Firpo’s Inverse Probability Weighted method (FIPW)

Firpo’s Inverse Probability Weighted (FIPW) method (Firpo 2007) involves a two-step estimator. First,
the propensity score is estimated nonparametrically as a logistic power series whose degree increases
with sample size. In the second step, the quantiles are estimated by minimising an inverse probability
weighted check loss function. These weights reflect the fact that the distribution of the covariates
differs in the two groups.

Algorithm E.2: FIPW Approach to Estimate QTEs

1. Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)
2. Result: Q̂TE(τ)
3. Step(1). Estimate propensity score π̂(x) = expit (HK(x)′p̂k) where
4. p̂K = argmax

p∈RK

1
N

∑N
i=1{Ti · log (expit (HK(x)′p)) + (1 − Ti) · log (1 − expit (HK(x)′p))}

5.
6. Step(2). Derive q̂1(τ) and q̂0(τ) as the solution to
7. q̂1(τ) ≡ argmin

q

∑N
i=1

Ti
N ·π̂(Xi)ρτ (Yi − q), and

8. q̂0(τ) ≡ argmin
q

∑N
i=1

1−Ti
N ·(1−π̂(Xi))ρτ (Yi − q)

9. where ρτ (a) = a · (τ − 1{a ≤ 0}) is the check function.
10. Calculate ∆̂τ = Q̂TE(τ) = q̂1(τ) − q̂0(τ)

Localized Debiased Machine Learning method (LDML)

The Localized Debiased Machine Learning (LDML) method (Kallus, Mao, and Uehara 2024) is also
motivated by the efficient estimation equation, but Inverse Probability Weighted (IPW) estimates are
used as rough initial guessed values for q̂1 and q̂0. Then, these values are used to localize the estimation
of conditional distributions Ĝ(y | 0,X) and Ĝ(y | 1,X), respectively. This approach aims to refine the
IPW estimate while obviating the need to estimate a continuum of continuum nuisances. The main
algorithm includes two parts: three-way-cross-fold nuisance estimation and solving the estimating
equation.

Algorithm E.3: LDML Approach to Estimate QTEs

1. Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)
2. Result: Q̂TE(τ)
3. Part(1). Three-way-cross-fold nuisance estimation
4. Fix integers K ≥ 3 and 1 ≤ K ′ ≤ K − 2.
5. Randomly permute the data indices and let Dk be a random even K-fold split of the data.
6. for k = 1, . . . ,K do
7. (a) Set Hk,1 = {1, . . . ,K ′ +1[k ≤ K ′]}\{k} and Hk,2 = {K ′ +1[k ≤ K ′]+1, . . . ,K}\{k}.
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8. (b) Use only the data in DC,1
k = {Xi : i ∈

⋃
k′∈Hk,1

} to construct q̂(k)
1,init.

9. (c) Use only the data in DC,2
k = {Xi : i ∈

⋃
k′∈Hk,2

} to construct Ĝ(k)
1 (·, q̂(k)

1,init).
10. (d) Use DC,1

k ∩ DC,2
k to construct estimator π̂(k).

11. end for
12. Part(2). Solving the average of the estimate in each fold to obtain q̂1(τ)
13. 1

N

∑K
k=1

∑
i∈Dk

ψ(Xi; q, Ĝ(k)
1 (Xi, q̂

(k)
1,init), π̂(k)(Xi)) = 0

14. Derive q̂0(τ) similarly.
15. Calculate ∆̂τ = Q̂TE(τ) = q̂1(τ) − q̂0(τ)

Targeted Maximum Likelihood Estimation method (TMLE)

The estimation procedure of Targeted Maximum Likelihood Estimation (TMLE) method (Díaz 2017)
includes three steps. First, the propensity score and the conditional distribution of the outcome are
estimated; second, the quantiles are estimated based on the current cdf of the outcome; and third, the
conditional distribution of the outcome is updated based on an exponential submodel for the density
of the outcome. The last two steps are iterated until convergence.

Algorithm E.4: TMLE Approach to Estimate QTEs

1. Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)
2. Result: Q̂TE

dr
(τ)

3. Initialize. Obtain initial estimates π̂ and Ĝ of π0 and G0

4. Compute q̂1(τ). For the current estimate Ĝ, compute
5. F̂ (y) = 1

n

∑n
i=1 Ĝ(y | 1, Xi) and q̂1(τ) = inf{y : F̂ (y) ≥ τ}

6. Update Ĝ. Let ĝ denote the density associated to Ĝ
7. The exponential submodel
8. ĝϵ(y | 0, x) = c(ϵ, ĝ)exp{ϵHη̂,θ̂(z)}ĝ(y | 0, x)
9. c(ϵ, ĝ) is a normalizing constant

10. Hη̂,θ̂(z) is the score of the model
11. Ĥη̂,θ̂(z) = 1

π̂(X){1(−∞,θ̂](y) − Ĝ(θ̂ | 0, x)}
12. Estimate ϵ
13. ϵ̂ = argmax∑n

i=1(1 − Ti) log ĝϵ(Yi | 0, Xi)
14. The updated estimator of g is given by ĝϵ̂(y | 0, x)
15. Iterate. Let ĝ = ĝϵ̂ and iterate steps 2-3 until convergence.
16. Derive q̂0(τ) similarly.
17. Calculate ∆̂τ = Q̂TE(τ) = q̂1(τ) − q̂0(τ)
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E.2 Variants of the Proposed Approach

Bayesian Outcome Modelling (BOM)

Bayesian Outcome Modelling is an outcome-regression-based approach that omits the treatment
assignment model. Instead, it solely focuses on estimating the conditional distribution through
multiple Bayesian quantile regressions in the outcome model of each treatment group. Shrinkage
priors, akin to the doubly-robust approach, can be readily incorporated.

Algorithm E.5: Bayesian Outcome Modelling to estimate QTE

1. Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)
2. Result: Q̂TE

om
(τ)

3. for t = 0, 1 do
4. Fit outcome model on {Yi,Xi}i:Ti=t (BQR) and obtain B posterior samples
5. {G(y | t,Xi)(b)}n,Bi,b=1
6. Derive posterior mean Ĝ(y | t,Xi) = 1

B

∑B
b=1G(y | t,Xi)(b).

7. end for
8. Derive q̂om1 (τ) and q̂om0 (τ) as the solutions to
9. 1

n

∑n
i=1 Ĝ(q1 | 1,Xi) = τ and 1

n

∑n
i=1 Ĝ(q0 | 0,Xi) = τ

10. Calculate ∆̂τ = Q̂TE
om

(τ) = q̂om1 (τ) − q̂om0 (τ).

Bayesian Propensity Score Analysis (BPSA)

Bayesian Propensity Score Analysis is a treatment-assignment-based approach, which involves fitting
the treatment assignment and then employs multiple Bayesian quantile regressions to model the
conditional distribution of the outcome given the posterior mean of the propensity score in each
treatment group.

Algorithm E.6: Bayesian Propensity Score Analysis to estimate QTE

1. Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)
2. Result: Q̂TE

ps
(τ)

3. Fit treatment assignment model on {Ti,Xi}ni=1 and obtain B posterior samples
4. {π(b)

i }n,Bi,b=1

5. Derive posterior mean π̂i = ∑B
b=1 π

(b)
i .

6. for t = 0, 1 do
7. Fit outcome model on {Yi, π̂i}i:Ti=t (BQR) and obtain B posterior samples
8. {G(y | t, π̂i)(b)}n,Bi,b=1
9. Derive posterior mean Ĝ(y | t, π̂i) = ∑B

b=1G(y | t, π̂i)(b).
10. end for
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11. Derive q̂ps1 (τ) and q̂ps0 (τ) as the solutions to
12. 1

n

∑n
i=1 Ĝ(q1 | 1,Xi) = τ and 1

n

∑n
i=1 Ĝ(q0 | 0,Xi) = τ .

13. Calculate ∆̂τ = Q̂TE
ps

(τ) = q̂ps1 (τ) − q̂ps0 (τ).
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F Additional Simulation Results

SD1

Table F.1: Simulation Results for SD1, relative RMSE

Estimation Methods

Percentiles N BDR BDRS BNP LDML TMLE FIPW

1000 1.71 1.689 0.991 1.234 1.771 1.789
500 1.623 1.54 0.946 1.124 1.658 1.77410th
100 2.459 1.226 0.963 1.193 1.332 1.529

1000 1.052 1.044 0.978 0.852 1.022 1.136
500 1.139 1.117 1.007 0.92 1.052 1.46825th
100 1.188 0.977 0.916 0.995 1.001 1.169

1000 0.598 0.599 0.99 0.744 0.623 0.659
500 0.663 0.657 0.978 0.776 0.669 0.71250th
100 0.916 0.819 0.971 0.944 0.886 1.114

1000 0.521 0.525 0.979 0.758 0.568 0.577
500 0.586 0.598 0.983 0.821 0.634 0.6575th
100 0.99 0.799 0.986 0.92 0.835 1.032

1000 0.583 0.593 0.98 0.803 0.605 0.606
500 0.635 0.663 0.991 0.86 0.691 0.72890th
100 1.233 0.853 0.974 0.928 0.897 1.055

Notes: This table displays the relative Root Mean Squared Error (RMSE)
of different estimation methods across 100 replicates. The rows contain
results for various percentile levels and for various sample size N . The
relative RMSE is the RMSE in comparison with the Naive method as the
benchmark, where RMSE =

√
R−1

∑R

r=1(α̂r − α)2 and R = 100.

Figure F.1: Line plots of raw RMSE for 10th, 25th, 50th, 75th, and 90th QTEs based on 100 replications.
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SD2

Table F.2: Simulation Results for SD2a, Average Bias and relative RMSE

Bias RMSE

10th 25th 50th 75th 90th 10th 25th 50th 75th 90th

Linear
BDR 0.055 0.002 -0.032 -0.008 0.016 2.036 1.098 0.673 0.637 0.839
BDRS 0.061 0.002 -0.030 -0.006 0.024 2.028 1.098 0.678 0.638 0.846
BOM 0.040 0.092 -0.013 -0.094 -0.053 0.928 0.921 0.562 0.620 0.814
BOMS 0.059 0.102 -0.002 -0.076 -0.025 0.913 0.904 0.554 0.619 0.812
BPSA 0.078 -0.042 -0.044 0.061 0.112 0.735 0.980 0.523 0.595 0.719
BNP 0.335 0.368 0.343 0.328 0.284 1.025 1.042 0.917 0.966 1.038

LDML 0.009 0.010 -0.009 0.019 0.163 0.985 1.029 0.616 0.696 0.819
TMLE 0.000 -0.005 -0.022 -0.041 0.025 1.224 1.229 0.694 0.752 1.180
FIPW 0.019 -0.039 -0.034 -0.010 0.014 1.845 1.286 0.710 0.761 1.285

No covariates
Naive 0.468 0.434 0.430 0.377 0.312 1.000 1.000 1.000 1.000 1.000

Notes: This table displays the average bias and the relative Root Mean Squared Error (RMSE) of
different estimation methods across 100 replicates. The relative RMSE is the RMSE in comparison
with the Naive method as the benchmark, where RMSE =

√
R−1

∑R

r=1(α̂r − α)2 and R = 100.

Table F.3: Simulation Results for SD2b, Average Bias and relative RMSE

Bias RMSE

10th 25th 50th 75th 90th 10th 25th 50th 75th 90th

Nonlinear
BDRS -0.014 0.015 0.019 0.027 0.011 0.680 0.878 0.520 0.570 0.543
BOMS 0.041 0.027 0.020 0.015 0.001 0.519 0.727 0.470 0.490 0.425
BPSA 0.140 -0.019 -0.029 0.077 0.099 0.715 0.955 0.538 0.604 0.705
LDML 0.111 0.052 0.047 0.062 0.182 0.852 1.006 0.722 0.730 0.831
TMLE -0.020 0.009 0.023 0.023 0.064 0.694 0.898 0.522 0.578 0.669
FIPW 0.034 0.120 0.090 -0.050 -0.051 2.180 2.066 1.981 2.056 1.678

No covariates
Naive 0.468 0.434 0.430 0.377 0.312 1.000 1.000 1.000 1.000 1.000

Notes: This table displays the average bias and the relative Root Mean Squared Error (RMSE) of
different estimation methods across 100 replicates. The relative RMSE is the RMSE in comparison
with the Naive method as the benchmark, where RMSE =

√
R−1

∑R

r=1(α̂r − α)2 and R = 100.
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G Additional Graphs in Empirical Illustration

Figure G.1: Histogram of total amount of loans at household level in treated villages and control villages.
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