# Causal Inference on Quantiles in High Dimensions: A Bayesian Approach

#### **Duong Trinh**

**Research Summary** 

June 2024



Causal Inference on Quantiles in High Dimensions

- **Q**: How can we investigate causal effects of an intervention on the entire *distribution* of outcomes when randomized experiments are unavailable?
- *Quantile treatment effects* matter: if impact is heterogeneous, average treatment effect may hide large positive and negative impacts.
- Relevant applications entail social welfare implications: financial interventions, education programs, public health policies, etc.
- I develop *Bayesian* tools to estimate quantile treatment effects in an *observational study* with potentially high-dimensional covariates.

## **Beyond Average: Quantile Treatment Effects**



• For each quantile level  $\tau \in [0, 1]$ 

$$QTE(\tau) \coloneqq F_1^{-1}(\tau) - F_0^{-1}(\tau) = q_1(\tau) - q_0(\tau)$$

#### Causal Inference on Quantiles in High Dimensions

## Identification: Conditional on Observables

• Q: Can't observe counterfactual outcomes, how do we even identify QTEs?

$$\begin{array}{c} Y(1), Y(0) \ \perp \ T \ \mid \mathbf{X} \\ \text{potential outcomes} \end{array} \stackrel{treatment controls}{\longrightarrow} F_t(y) = \int_{\mathcal{X}} \underbrace{G(y \mid T = t, \mathbf{X} = \mathbf{x})}_{\text{conditional distribution}} dF_{\mathbf{X}}(\mathbf{x}), \quad \text{ for } t \in \{0, 1\}. \end{array}$$

- Remained obstacles:
  - The number of *possible* controls is large, but *specific* controls needed are unknown.
  - Conditional distribution is itself a *complex* function.
    - $\implies$  this forces us to consider high dimensions.

#### Main contribution:

A Bayesian Analog of Doubly Robust (BADR) approach for estimation and inference on unconditional QTEs in presence of potentially high-dimensional covariates.

#### Double Robustness

utilize both treatment assignment model and outcome model to provide *double* protection against model misspecification.

#### • Adaptability to High Dimensions

incorporate Bayesian flexible data-driven methods to accommodate high-dimensional covariates and non-linear relationships while achieving proper uncertainty quantification.

## **Related Literature and Contributions**





### 1 Introduction

**2** Bayesian Analog of Doubly Robust (BADR) framework

Onte Carlo Study

**4** Empirical Application

**5** Conclusion



#### **1** Introduction

### **2** Bayesian Analog of Doubly Robust (BADR) framework

Onte Carlo Study

**4** Empirical Application

**6** Conclusion



- T and Y are a binary treatment and the outcome of interest;
   X is a p-dimensional vector of covariates.
- Y(1) and Y(0) are the *treated* and *untreated* potential outcomes;  $F_1(y)$  and  $F_0(y)$  are corresponding cumulative distribution functions.
- For each quantile level  $\tau \in [0, 1]$

$$QTE(\tau) \coloneqq F_1^{-1}(\tau) - F_0^{-1}(\tau) = q_1(\tau) - q_0(\tau)$$

which can be identified from observational data under *Conditional-on-Observables*, *Positivity*, and *SUTVA* assumptions.

• General QTE estimation problem from observational data involves *nuisance* functions:

 $G(y \mid 1, \mathbf{X}) = \mathbb{P}[Y \le y \mid T = 1, \mathbf{X}]$  and  $G(y \mid 0, \mathbf{X}) = \mathbb{P}[Y \le y \mid T = 0, \mathbf{X}]$  are the conditional distributions of outcome Y given  $(T, \mathbf{X})$ .

 $\pi(\mathbf{X}) = \mathbb{P}(T = 1 | \mathbf{X})$  is the *propensity score* - the probability of receiving active <u>treatment</u> given covariates  $\mathbf{X}$ .

$$\widehat{QTE}^{dr}(\tau) = \hat{q}_1^{dr}(\tau) - \hat{q}_0^{dr}(\tau), \quad \text{for each } \tau \in [0,1].$$
(\*

•  $\hat{q}_1^{dr}$  is the solution to

$$\frac{1}{n}\sum_{i=1}^{n}\frac{T_{i}}{\hat{\pi}(\mathbf{X}_{i})}\left[\mathbb{1}(Y_{i}\leq q_{1})-\hat{G}(q_{1}\mid 1,\mathbf{X}_{i})\right]+\hat{G}(q_{1}\mid 1,\mathbf{X}_{i})-\tau=0.$$
(1)

•  $\hat{q}_0^{dr}$  is the solution to

$$\frac{1}{n}\sum_{i=1}^{n}\frac{1-T_{i}}{1-\hat{\pi}(\mathbf{X}_{i})}\left[\mathbb{1}(Y_{i}\leq q_{0})-\hat{G}(q_{0}\mid 0,\mathbf{X}_{i})\right]+\hat{G}(q_{0}\mid 0,\mathbf{X}_{i})-\tau=0.$$
(2)

$$\widehat{QTE}^{dr}(\tau) = \hat{q}_1^{dr}(\tau) - \hat{q}_0^{dr}(\tau), \quad \text{for each } \tau \in [0, 1].$$
 (\*

•  $\hat{q}_1^{dr}$  is the solution to

$$\frac{1}{n}\sum_{i=1}^{n}\frac{T_{i}}{\hat{\pi}(\mathbf{X}_{i})}\left[\mathbb{1}(Y_{i}\leq q_{1})-\hat{G}(q_{1}\mid 1,\mathbf{X}_{i})\right]+\hat{G}(q_{1}\mid 1,\mathbf{X}_{i})-\tau=0.$$
(1)

•  $\hat{q}_0^{dr}$  is the solution to

$$\frac{1}{n}\sum_{i=1}^{n}\frac{1-T_{i}}{1-\hat{\pi}(\mathbf{X}_{i})}\left[\mathbb{1}(Y_{i}\leq q_{0})-\hat{G}(q_{0}\mid 0,\mathbf{X}_{i})\right]+\hat{G}(q_{0}\mid 0,\mathbf{X}_{i})-\tau=0.$$
(2)

$$\widehat{QTE}^{dr}( au) = \hat{q}_1^{dr}( au) - \hat{q}_0^{dr}( au), \quad ext{for each } au \in [0,1].$$

•  $\hat{\theta}^{dr}$  is the solution to

$$\frac{1}{n}\sum_{i=1}^{n}\frac{T_{i}}{\hat{\pi}(\mathbf{X}_{i})}\left[\mathbb{1}(Y_{i}\leq\theta)-\hat{\eta}(\mathbf{X}_{i},\theta)\right]+\hat{\eta}(\mathbf{X}_{i},\theta)-\tau=0.$$
(1)

•  $\hat{q}_0^{dr}$  is the solution to

$$\frac{1}{n}\sum_{i=1}^{n}\frac{1-T_{i}}{1-\hat{\pi}(\mathbf{X}_{i})}\left[\mathbb{1}(Y_{i}\leq q_{0})-\hat{G}(q_{0}\mid 0,\mathbf{X}_{i})\right]+\hat{G}(q_{0}\mid 0,\mathbf{X}_{i})-\tau=0.$$
(2)

### **Doubly Robust Estimator**

- **Q**: Why Double Robustness property? What does  $\hat{\theta}^{dr}$  estimate?
  - Estimating equation is built upon an efficient influence function (Robins and Rotnitzky, 1995; Tsiatis, 2006; Kennedy, 2022) tailored to quantiles → first-order insensitivity to perturbations in nuisances.
  - 1<sup>st</sup> view: Augmented OR (outcome regression) estimating equation

$$0 = \frac{1}{n} \sum_{i=1}^{n} \left[ \hat{\eta}(\mathbf{X}_i, \theta) - \tau \right] + \frac{1}{n} \sum_{i=1}^{n} \frac{T_i \left[ \mathbbm{1}(Y_i \le \theta) - \hat{\eta}(\mathbf{X}_i, \theta) \right]}{\hat{\pi}(\mathbf{X}_i)}.$$

• 2<sup>nd</sup> view: Augmented IPW (inverse-probability-weighting) estimating equation

$$0 = \frac{1}{n} \sum_{i=1}^{n} \frac{T_i \left[\mathbbm{1}(Y_i \le \theta) - \tau\right]}{\hat{\pi}(\mathbf{X}_i)} + \frac{1}{n} \sum_{i=1}^{n} \frac{\left[T_i - \hat{\pi}(\mathbf{X}_i)\right] \left[\hat{\eta}(\mathbf{X}_i, \theta) - \tau\right]}{\hat{\pi}(\mathbf{X}_i)}.$$

### **Doubly Robust Estimator**

- **Q**: Why Double Robustness property? What does  $\hat{\theta}^{dr}$  estimate?
  - $1^{st}$  view: Augmented OR estimating equation; when  $n \to \infty$ , if outcome regression model is corrected specified

$$0 = \mathbb{E}\left[\eta_{\mathsf{true}}(\mathbf{X}, \theta) - \tau\right] + \mathbb{E}\left\{\frac{T\left[\mathbbm{1}\left(Y \leq \theta\right) - \eta_{\mathsf{true}}(\mathbf{X}, \theta)\right]}{\pi(\mathbf{X})}\right\}.$$

•  $2^{nd}$  view: Augmented IPW estimating equation; when  $n \to \infty$ , if treatment assignment model is corrected specified

$$0 = \mathbb{E}\left\{\frac{T\left[\mathbbm{1}(Y \le \theta) - \tau\right]}{\pi_{\mathsf{true}}(\mathbf{X})}\right\} + \mathbb{E}\left\{\frac{[T - \pi_{\mathsf{true}}(\mathbf{X})]\left[\eta(\mathbf{X}, \theta) - \tau\right]}{\pi_{\mathsf{true}}(\mathbf{X})}\right\}.$$

•  $\hat{\theta}^{dr}$  remains consistent even if *one* of the treatment assignment model or the outcome regression model is misspecified.

## High-dimensional Modeling

1 Propensity score:  $\pi(\mathbf{X}) = \mathbb{P}(T = 1 \mid \mathbf{X})$ 

Fit a binary Bayesian Additive Regression Trees (BART) model:

$$\mathbb{P}(T_i = 1 \mid \mathbf{X}_i) = H\left[f_{\mathsf{BART}}(\mathbf{X}_i)\right],\tag{1}$$

where  ${\boldsymbol{H}}$  is either the probit link or logistic link function, and

$$f_{\mathsf{BART}}(\mathbf{X}_i) = \sum_{m=1}^M f_{\mathsf{tree}}\left(\mathbf{X}_i; \Gamma_m, \mu_m\right)$$
 are sum of  $M$  Bayesian regression trees.

Hierarchical priors: 1. independent priors over tree structures  $\Gamma_m$ 2. independent priors over leaf parameters  $\mu_m$ , given the tree.

*B* posterior draws 
$$b = 1, ..., B$$
:  
 $\pi^{(b)}(\mathbf{X}_i) = H\left[\sum_{m=1}^{M} f_{\text{tree}}\left(\mathbf{X}_i; \Gamma_m^{(b)}, \mu_m^{(b)}\right)\right]$ 

## High-dimensional Modeling

2 Conditional distributions:

 $G(y \mid 1, \mathbf{X}) = \mathbb{P}[Y \leq y \mid T = 1, \mathbf{X}] \text{ and } G(y \mid 0, \mathbf{X}) = \mathbb{P}[Y \leq y \mid T = 0, \mathbf{X}].$ 

N1. General connection of the conditional distribution with the conditional quantiles

$$F_{Y|\mathbf{X}}(y) = \int_0^1 \mathbb{1}\{\mathcal{Q}_{Y|\mathbf{X}}(\tau) \le y\} d\tau \stackrel{\text{discretization}}{\Longrightarrow} \hat{F}_{Y|\mathbf{X}}(y) = \epsilon + \sum_{s=1}^S \delta_s \mathbb{1}\{\hat{\mathcal{Q}}_{Y|\mathbf{X}}(\tau_s) \le y\},$$

N2. Conditional quantiles are predictable by fitting **Bayesian Quantile Regression** for S quantile levels  $\tau_s$ 

$$Y_i = \mathbf{X}_i \beta(\tau_s) + \epsilon_i(\tau_s)$$
 where  $\epsilon_i(\tau_s) \sim \mathcal{A}$ ssymetric  $\mathcal{L}$ aplace  $(\tau, 0, \sigma(\tau_s))$ .

Hierarchical priors:1. priors for error distribution: location & scale.2. priors for regression coefficients:shrinkage priors can be incorporated.

B posterior draws  $b = 1, \dots, B$ :  $\mathcal{Q}_i^{(b)}(\tau_s) = \mathbf{X}_i \beta^{(b)}(\tau_s)$  $G^{(b)}(y \mid 1, \mathbf{X}_i); G^{(b)}(y \mid 0, \mathbf{X}_i)$  Algorithm 1: Bayesian Analog Doubly Robust (BADR) estimation for QTEs

- Data:  $\{Y_i, T_i, \mathbf{X}_i\}_{i=1}^n, \tau \in (0, 1)$ Result:  $\widehat{QTE}^{dr}(\tau)$
- 1 Fit treatment assignment model on  $\{T_i, \mathbf{X}_i\}_{i=1}^n$  and obtain B posterior samples  $\{\pi^{(b)}(\mathbf{X})\}_{b=1}^B$

2 for 
$$\underline{t=0,1}$$
 do

- 3 Fit outcome model on  $\{Y_i, \mathbf{X}_i\}_{i:T_i=t}$  and obtain B posterior samples  $\{G^{(b)}(y \mid t, \mathbf{X})\}_{b=1}^B$ end
- 4 for  $\underline{b=1,\ldots,B}$  do
- 5 Solve  $q_1^{(b)}(\tau), q_0^{(b)}(\tau)$  using  $\pi^{(b)}(\mathbf{X})$  and  $G^{(b)}(y \mid t, \mathbf{X}_i)$ , according to equations (1) and (2).
- $\label{eq:calculate} \begin{array}{c} \mathbf{6} \end{array} \left| \begin{array}{c} \mbox{Calculate } QTE^{(b)}(\tau) = q_1^{(b)}(\tau) q_0^{(b)}(\tau). \\ \mbox{end} \end{array} \right.$

7 Calculate 
$$\widehat{QTE}^{dr}(\tau) = \frac{1}{B} \sum_{b=1}^{B} QTE^{(b)}(\tau)$$



#### **1** Introduction

**2** Bayesian Analog of Doubly Robust (BADR) framework

### 3 Monte Carlo Study

**4** Empirical Application

**6** Conclusion

### Benchmark:

• Naive estimator (Naive)

### Proposed estimators:

- Bayesian Doubly Robust estimator (BDR)
- Bayesian Doubly Robust estimator with a shrinkage prior (BDRS)

### Popular alternative estimators:

- Firpo's (2007) Inverse Probability Weighted (FIPW)
- Díaz's (2017) Targeted Maximum Likelihood Estimation (TMLE)
- Xu et al.'s (2018) Bayesian Non-parametric (BNP)
- Kallus et al.'s (2024) Localized Debiased Machine Learning (LDML)

### **Data Generating Process**

 $\clubsuit$  Linear setting with varying p/N:

 $p = 40; N \in \{100, 500, 1000\}$ 

$$\begin{aligned} X_1, X_2, \dots, X_{40} &\stackrel{iid}{\sim} \operatorname{Normal}\left(0, 1\right) \\ T \mid \mathbf{X} \sim \operatorname{Bernoulli}\left(\pi(\mathbf{X})\right) \\ Y(0) \mid \mathbf{X} \sim \operatorname{Normal}\left(\mu(\mathbf{X}), 2.5^2\right) \\ Y(1) \mid \mathbf{X} \sim \operatorname{Normal}\left(1 + \mu(\mathbf{X}), 3.75^2\right) \\ Y = T \times Y(1) + (1 - T) \times Y(0) \end{aligned}$$

where 
$$\pi(\mathbf{X}) = \{1 + \exp\left[-(X_1 + X_2 + X_3)\right]\}^{-1},$$
  
 $\mu(\mathbf{X}) = X_1 + X_2 + X_4 + X_5$ 

### **Data Generating Process**



• True QTEs (population parameters of interest)

$$\Delta_{0.10} = -0.34, \Delta_{0.25} = 0.29, \Delta_{0.5} = 1, \Delta_{0.75} = 1.70, \Delta_{0.90} = 2.34$$

Table 1. Comparison of point estimates for QTEs and 95% CI across 100 replicates. (N=1000, p=40)

|           | Percentiles      |                  |               |                  |               |  |  |  |
|-----------|------------------|------------------|---------------|------------------|---------------|--|--|--|
|           | $10 \mathrm{th}$ | $25 \mathrm{th}$ | 50th          | $75 \mathrm{th}$ | 90th          |  |  |  |
| True QTEs | -0.34            | 0.29             | 1.00          | 1.71             | 2.34          |  |  |  |
| Methods   |                  |                  |               |                  |               |  |  |  |
| BDR       | -0.37            | 0.30             | 0.95          | 1.64             | 2.30          |  |  |  |
| BDR       | (-1.20, 0.46)    | (-0.38, 0.97)    | (0.37,  1.53) | (1.00,  2.27)    | (1.50,  3.11) |  |  |  |
| BDRS      | -0.34            | 0.31             | 0.95          | 1.65             | 2.34          |  |  |  |
| BDRS      | (-1.16, 0.48)    | (-0.34, 0.96)    | (0.38,  1.53) | (1.03, 2.27)     | (1.56,  3.12) |  |  |  |
| BNP       | 0.92             | 1.55             | 2.24          | 2.93             | 3.59          |  |  |  |
| DNF       | (0.24,  1.58)    | (1.01,  2.09)    | (1.74, 2.74)  | (2.39, 3.48)     | (2.91,  4.25) |  |  |  |
| LDML      | 0.29             | 0.96             | 1.63          | 2.35             | 3.04          |  |  |  |
| LDML      | (-0.74, 1.31)    | (-0.08, 2.01)    | (0.25, 3.01)  | (-0.00, 4.70)    | (-1.74, 7.82) |  |  |  |
| TMLE      | -0.38            | 0.39             | 1.07          | 1.75             | 2.32          |  |  |  |
| IMLE      | (-1.63, 0.86)    | (-0.44, 1.22)    | (0.36, 1.78)  | (0.94, 2.56)     | (1.15, 3.49)  |  |  |  |
| FIPW      | -0.38            | 0.27             | 0.92          | 1.64             | 2.25          |  |  |  |
|           | (-1.71, 0.96)    | (-0.93, 1.47)    | (-0.18, 2.02) | (0.43, 2.85)     | (0.88, 3.63)  |  |  |  |
| Naire     | 0.94             | 1.58             | 2.25          | 2.97             | 3.65          |  |  |  |
| Naive     | (0.14, 1.74)     | (0.97, 2.19)     | (1.67, 2.84)  | (2.35, 3.59)     | (2.86, 4.43)  |  |  |  |

Causal Inference on Quantiles in High Dimensions

### Figure 1. Sampling distributions of bias for QTEs across 100 replicates.



### Figure 1. Sampling distributions of bias for QTEs across 100 replicates.



Figure 1. Sampling distributions of bias for QTEs across 100 replicates.



Causal Inference on Quantiles in High Dimensions

#### Table 2. Average Bias.

|                  |      | Estimation Methods |        |       |       |        |        |       |
|------------------|------|--------------------|--------|-------|-------|--------|--------|-------|
| Percentiles      | Ν    | BDR                | BDRS   | BNP   | LDML  | TMLE   | FIPW   | Naive |
|                  | 1000 | -0.022             | 0.001  | 1.261 | 0.63  | -0.041 | -0.034 | 1.282 |
| $10 \mathrm{th}$ | 500  | 0.008              | 0.153  | 1.261 | 0.794 | 0.121  | 0.102  | 1.269 |
|                  | 100  | -0.659             | 0.56   | 1.267 | 0.928 | 0.724  | 0.901  | 1.398 |
|                  | 1000 | 0.003              | 0.017  | 1.261 | 0.669 | 0.1    | -0.025 | 1.288 |
| $25 \mathrm{th}$ | 500  | 0.047              | 0.103  | 1.245 | 0.764 | 0.266  | -0.035 | 1.237 |
|                  | 100  | 0.265              | 0.49   | 1.32  | 1.03  | 0.793  | 0.794  | 1.296 |
|                  | 1000 | -0.049             | -0.045 | 1.24  | 0.632 | 0.071  | -0.08  | 1.25  |
| 50th             | 500  | 0.035              | 0.053  | 1.209 | 0.718 | 0.215  | -0.054 | 1.241 |
|                  | 100  | 0.696              | 0.595  | 1.284 | 1.073 | 0.85   | 0.852  | 1.295 |
|                  | 1000 | -0.071             | -0.057 | 1.228 | 0.641 | 0.045  | -0.068 | 1.266 |
| 75th             | 500  | 0.022              | 0.071  | 1.192 | 0.743 | 0.172  | -0.111 | 1.226 |
|                  | 100  | 0.809              | 0.574  | 1.24  | 0.941 | 0.673  | 0.822  | 1.179 |
|                  | 1000 | -0.039             | -0.006 | 1.247 | 0.696 | -0.024 | -0.089 | 1.302 |
| 90th             | 500  | -0.008             | 0.096  | 1.21  | 0.736 | 0.094  | 0.07   | 1.206 |
|                  | 100  | 0.564              | 0.712  | 1.293 | 1.036 | 0.825  | 1.093  | 1.314 |

#### Table 3. Relative Mean Absolute Error.

|                  |      | Estimation Methods |       |       |       |       |       |  |
|------------------|------|--------------------|-------|-------|-------|-------|-------|--|
| Percentiles      | Ν    | BDR                | BDRS  | BNP   | LDML  | TMLE  | FIPW  |  |
|                  | 1000 | 1.67               | 1.645 | 0.99  | 1.169 | 1.741 | 1.741 |  |
| $10 \mathrm{th}$ | 500  | 1.571              | 1.462 | 0.964 | 1.078 | 1.547 | 1.634 |  |
|                  | 100  | 2.449              | 1.194 | 0.945 | 1.123 | 1.272 | 1.346 |  |
|                  | 1000 | 0.999              | 0.996 | 0.969 | 0.862 | 0.978 | 1.077 |  |
| $25 \mathrm{th}$ | 500  | 1.135              | 1.117 | 1.017 | 0.947 | 1.07  | 1.391 |  |
|                  | 100  | 1.182              | 0.986 | 0.93  | 1     | 0.992 | 1.107 |  |
|                  | 1000 | 0.628              | 0.628 | 0.994 | 0.739 | 0.64  | 0.688 |  |
| 50th             | 500  | 0.673              | 0.666 | 0.976 | 0.778 | 0.676 | 0.694 |  |
|                  | 100  | 0.876              | 0.81  | 0.964 | 0.943 | 0.876 | 1.012 |  |
|                  | 1000 | 0.477              | 0.479 | 0.981 | 0.704 | 0.513 | 0.523 |  |
| $75 \mathrm{th}$ | 500  | 0.547              | 0.56  | 0.981 | 0.776 | 0.592 | 0.604 |  |
|                  | 100  | 0.927              | 0.771 | 1.004 | 0.912 | 0.81  | 0.992 |  |
|                  | 1000 | 0.519              | 0.529 | 0.979 | 0.771 | 0.539 | 0.534 |  |
| 90th             | 500  | 0.572              | 0.596 | 1.002 | 0.819 | 0.623 | 0.669 |  |
|                  | 100  | 1.109              | 0.822 | 0.988 | 0.919 | 0.851 | 1.06  |  |

- BDR and BDRS showcase a substantial improvement in bias reduction for QTE estimates, proving beneficial in modeling the conditional distribution of potential outcomes given confounders.
- BDRS provides extra merit thanks to its adaptation to high-dimensional covariates by augmenting with shrinkage priors.



#### **1** Introduction

**2** Bayesian Analog of Doubly Robust (BADR) framework

Onte Carlo Study

**4** Empirical Application

**6** Conclusion

Q: Unconditional quantile treatment effects of *loan access* 

on household consumption and business outcome?

- Dynamic general equilibrium: Borrowers differ in their investment opportunities and productivity.
   → Potential winners and losers to financial market expansion (Kaboski and Townsend, 2011;
   Banerjee, 2013).
- Evaluation is often limited in *average* treatment effect or *randomization*.
- Revisit Crépon et al.'s (2015) microcredit study across 162 Moroccan villages.

## Household Consumption and Business Outcomes

#### Table 4. Summary Statistics of Household Outcomes.

|                   | Borrowers |            | Non-borrowers |            | Borrowers – Non-borrowers |     |             |
|-------------------|-----------|------------|---------------|------------|---------------------------|-----|-------------|
| Outcome variables | Mean      | St.Dev.    | Mean          | St.Dev.    | Diff.Mean                 |     | t-statistic |
| (in MAD)          |           |            |               |            |                           |     |             |
| Total Consumption | 3268.62   | (2956.01)  | 2863.49       | (1792.97)  | 405.13                    | *** | 3.82        |
| Temptation Goods  | 312.33    | (229.91)   | 270.31        | (219.33)   | 42.01                     | *** | 4.73        |
| Total Output      | 32672.06  | (85071.58) | 30885.38      | (85939.63) | 1786.68                   |     | 0.54        |
| Total Profit      | 10081.86  | (37986.07) | 8409.95       | (45277.88) | 1671.91                   |     | 1.07        |

## Household Consumption and Business Outcomes



#### Table 5. Covariate Balance between Borrowers and Non-borrowers.

|                                      | Borrowers     | Non-borrowers | Borrowers – Non-borrowers |     |             |
|--------------------------------------|---------------|---------------|---------------------------|-----|-------------|
| Control variables                    | Mean (sd)     | Mean (sd)     | Diff.Mean                 |     | t-statistic |
| Head age                             | 49.01 (15.62) | 48.53(15.93)  | 0.49                      |     | 0.79        |
| Head with no education               | 0.68(0.47)    | 0.68(0.47)    | 0.00                      |     | 0.05        |
| Number of members                    | 6.06(2.46)    | 5.54(2.48)    | 0.52                      | *** | 5.36        |
| Number of adults                     | 4.02(2.01)    | 3.71(1.92)    | 0.31                      | *** | 3.99        |
| Number of members aged 6-16          | 1.36(1.30)    | 1.19(1.27)    | 0.16                      | **  | 3.23        |
| Declared animal husbandry activities | 0.59(0.49)    | 0.57 (0.50)   | 0.02                      |     | 1.23        |
| Declared non-agricultural activities | 0.23(0.42)    | 0.18(0.38)    | 0.05                      | **  | 3.17        |
| Spouse of head responded             | 0.05(0.23)    | 0.09(0.29)    | -0.04                     | *** | -3.96       |
| Member responded                     | 0.05(0.21)    | 0.05(0.22)    | 0.00                      |     | -0.36       |
| Microcredit availability             | 0.55(0.50)    | 0.47 (0.50)   | 0.07                      | *** | 3.73        |

|                   |                  |              | BDRS        |             | Naive    |
|-------------------|------------------|--------------|-------------|-------------|----------|
| Outcomes          | Percentiles      | QTEs         | Upper bound | Lower bound | QTEs     |
|                   | 10th             | 20.09        | 1469.21     | -1429.02    | 232.80   |
|                   | 25th             | 9.24         | 173.51      | -155.03     | 173.46   |
| Total Consumption | 50th             | 79.95        | 229.59      | -69.69      | 229.75   |
|                   | 75th             | 132.22       | 273.97      | -9.53       | 286.68   |
|                   | 90th             | 237.7        | 543.35      | -67.96      | 685.44   |
|                   | 10th             | -8.69        | 65.66       | -83.04      | 17.38    |
|                   | $25 \mathrm{th}$ | 13.04        | 29.87       | -3.80       | 21.73    |
| Temptation Goods  | 50th             | <b>30.41</b> | 45.96       | 14.87       | 43.45    |
|                   | 75th             | 47.79        | 79.22       | 16.37       | 60.83    |
|                   | 90th             | 78.21        | 129.14      | 27.28       | 78.21    |
|                   | 10th             | 0            | 13146.95    | -13146.95   | 0.00     |
|                   | 25th             | -330         | 19.77       | -679.77     | 1093.45  |
| Total Output      | 50th             | 50           | 1385.99     | -1285.99    | 1787.50  |
|                   | 75th             | 1666         | 6933.21     | -3601.21    | 2771.62  |
|                   | 90th             | 27360        | 52964.20    | 1755.80     | 2744.04  |
|                   | $10 \mathrm{th}$ | -5500        | -1183.54    | -9816.46    | -1142.70 |
|                   | 25th             | -945         | 158.83      | -2048.83    | -241.88  |
| Total Profit      | 50th             | 561          | 1117.73     | 4.27        | 979.12   |
|                   | 75th             | 1780.77      | 4273.91     | -712.38     | 549.37   |
|                   | 90th             | 8954.38      | 16664.23    | 1244.52     | -1086.35 |

#### Causal Inference on Quantiles in High Dimensions

# **QTEs on Total Profit**



• Evidence of systematic harm in terms of *total profit*: a segment of households may experience adverse effects that extend the lower tail of the distribution leftward.

Causal Inference on Quantiles in High Dimensions



### **1** Introduction

**2** Bayesian Analog of Doubly Robust (BADR) framework

Onte Carlo Study

**4** Empirical Application

**5** Conclusion

# Conclusion

- Quantile Treatment Effect, while posing technical challenges, is a worthwhile causal estimand to uncover treatment effect heterogeneity and distributional impacts.
- 2 This paper proposes flexible BADR-QTE estimation framework for observational studies:
  - double robustness & adaptability to high-dimensional covariates.
  - substantial bias reduction compared to popular alternative estimators.
  - *microcredit application*: value added in characterizing heterogeneous distributional impacts on outcomes and detecting changes in household inequality.
- **3** Future extensions: improve computation for inference; embrace unmeasured confounding.

Thank you! https://duongtrinhss.github.io/

## Bayesian Additive Regression Tree (BART)

#### The prior of BART is specified for three components:

• The ensemble structure  $\{\Gamma_m\}_{m=1}^M$ 

 $\Pr(\operatorname{split} \mid \stackrel{\text{tree depth}}{\Box}) = \alpha (1+d)^{-\beta} \qquad \Rightarrow \quad \Gamma_m \sim P_{\alpha,\beta}$ where  $\alpha \in (0,1), \beta \in (0,\infty).$ 

• The parameters  $\{\mu_m\}_{m=1}^M$  associated with the terminal nodes given  $\{\Gamma_m\}_{m=1}^M$ 

$$\mu_{m,l} \stackrel{iid}{\sim} N\left(0,v\right) \tag{2}$$

• The error variance  $\sigma^2$  that is independent with the former two

$$\sigma^2 \sim \text{Inv-Gamma}\left(r, s\right)$$
 (3)

# Bayesian Quantile Regression (BQR)

For i = 1, ..., n

$$\begin{aligned} Y_i &= \mathbf{X}_i \beta_{(\tau)} + \epsilon_{i,(\tau)} \\ Y_i &= \mathbf{X}_i \beta_{(\tau)} + \theta_{(\tau)} z_{i,(\tau)} + \kappa_{(\tau)} \sqrt{\sigma_{(\tau)} z_{i,(\tau)}} u_i \end{aligned}$$

Prior specification

$$\beta_{(\tau)} \sim N_p \left( 0, \lambda \times \mathbf{I}_p \right),$$
(4)

$$z_{i,(\tau)} \sim \mathsf{Exp}\left(\sigma_{(\tau)}\right) \qquad \forall i = 1, \dots, n,$$
(5)

$$\sigma_{(\tau)} \sim \text{Inv-Gamma}\left(r_{0,(\tau)}, s_{0,(\tau)}\right),\tag{6}$$

where  $\lambda$  is fixed and known for all  $\tau$ .

• The conditional posteriors are of the form

$$\beta_{(\tau)} \mid \bullet \sim N_p \left( \mu_{\beta,(\tau)}, \boldsymbol{\Sigma}_{\beta,(\tau)} \right), \tag{7}$$

$$z_{i,(\tau)} \mid \bullet \sim \mathsf{GIG}\left(\frac{1}{2}, a_{i,(\tau)}, b_{i,(\tau)}\right), \quad \forall i = 1, \dots, n,$$
(8)

$$\sigma_{(\tau)} \mid \bullet \sim \mathsf{Inv}\text{-}\mathsf{Gamma}\left(r_{\sigma,(\tau)}, s_{\sigma,(\tau)}\right),\tag{9}$$

where

$$\boldsymbol{\Sigma}_{\boldsymbol{\beta},(\tau)} = \left( \mathbf{X}^{\top} \mathbf{U}^{-1} \mathbf{X} + \boldsymbol{\Sigma}_{0,(\tau)}^{-1} \right)^{-1} \text{ and } \mu_{\boldsymbol{\beta},(\tau)} = \boldsymbol{\Sigma}_{\boldsymbol{\beta},(\tau)} \times \mathbf{X}^{\top} \mathbf{U}^{-1} \left( \mathbf{Y} - \boldsymbol{\theta}_{(\tau)} \mathbf{z}_{(\tau)} \right),$$

$$\mathbf{U} = \left(\sigma_{(\tau)} \kappa_{(\tau)}^2\right) \times \mathsf{diag}\left(\mathbf{z}_{(\tau)}\right), \quad \mathbf{z}_{(\tau)} = \left(z_{1,(\tau)}, \dots, z_{n,(\tau)}\right)'$$

$$\begin{aligned} a_{i,(\tau)} &= \frac{1}{\sigma(\tau)} \left( 2 + \frac{\theta_{(\tau)}^2}{\kappa_{(\tau)}^2} \right) \text{ and } b_{i,(\tau)} = \frac{\left( Y_i - \mathbf{X}_i \beta_{(\tau)} \right)^2}{\sigma_{(\tau)} \kappa_{(\tau)}^2}, \\ r_{\sigma,(\tau)} &= r_{0,(\tau)} + \frac{3n}{2} \text{ and } s_{\sigma,(\tau)} = s_{0,(\tau)} + \sum_{i=1}^n \frac{\left( Y_i - \mathbf{X}_i \beta_{(\tau)} - \theta_{(\tau)} z_{i,(\tau)} \right)^2}{2\kappa_{(\tau)}^2 z_{i,(\tau)}} + \sum_{i=1}^n z_{i,(\tau)}. \end{aligned}$$

### Bayesian Adaptive Lasso Quantile Regression

For i = 1, ..., n

$$Y_i = \mathbf{X}_i \beta_{(\tau)} + \theta_{(\tau)} z_{i,(\tau)} + \kappa_{(\tau)} \sqrt{\sigma_{(\tau)} z_{i,(\tau)}} u_i$$

• Hierarchical Priors

$$\beta_{j,(\tau)}, v_{j,(\tau)} \mid \sigma_{(\tau)}, \lambda_{j,(\tau)}^{2} \sim \frac{1}{\sqrt{2\pi v_{j,(\tau)}}} \exp\left\{-\frac{\beta_{j,(\tau)}^{2}}{2v_{j,(\tau)}}\right\} \frac{\sigma_{(\tau)}^{-1}}{2\lambda_{j,(\tau)}^{2}} \exp\left\{\frac{-\sigma_{(\tau)}^{-1}}{2\lambda_{j,(\tau)}^{2}}v_{j,(\tau)}\right\},$$
(10)  
$$\lambda_{j,(\tau)}^{2} \sim \text{Inv-Gamma}\left(c_{0,(\tau)}, d_{0,(\tau)}\right),$$
(11)  
$$\sigma_{(\tau)} \sim \text{Inv-Gamma}\left(r_{0,(\tau)}, s_{0,(\tau)}\right)$$
(12)

• The conditional posteriors (Alhamzawi et al., 2012) are of the form

$$z_{i,(\tau)} \mid \bullet \sim \mathsf{GIG}\left(\frac{1}{2}, a_{i,(\tau)}, b_{i,(\tau)}\right), \quad \forall i = 1, \dots, n,$$
(13)

$$\beta_{j,(\tau)} \mid \bullet \sim N\left(\mu_{\beta_j,(\tau)}, \Sigma_{\beta_j,(\tau)}\right), \quad \forall j = 1, \dots, p,$$
(14)

$$v_{j,(\tau)} \mid \bullet \sim \mathsf{GIG}\left(\frac{1}{2}, \frac{\sigma_{(\tau)}^{-1}}{\lambda_{j,(\tau)}^2}, \beta_{j,(\tau)}^2\right),\tag{15}$$

$$\sigma_{(\tau)} \mid \bullet \sim \mathsf{Inv-Gamma}\left(r_{\sigma,(\tau)}, s_{\sigma,(\tau)}\right),\tag{16}$$

$$\lambda_{j,(\tau)}^{2} \mid \bullet \sim \text{Inv-Gamma}\left(c_{0,(\tau)} + 1, d_{0,(\tau)} + \sigma_{(\tau)}^{-1} v_{j,(\tau)}/2\right),\tag{17}$$

where

$$\begin{split} a_{i,(\tau)} &= \frac{1}{\sigma(\tau)} \left( 2 + \frac{\theta_{(\tau)}^2}{\kappa_{(\tau)}^2} \right) \text{ and } b_{i,(\tau)} = \frac{\left(Y_i - \mathbf{X}_i \beta_{(\tau)}\right)^2}{\sigma_{(\tau)} \kappa_{(\tau)}^2}, \\ \Sigma_{\beta_j,(\tau)} &= \left[ \left( \sigma \kappa_{(\tau)}^2 \right)^{-1} \sum_{i=1}^n x_{ij}^2 z_{i,(\tau)}^{-1} + v_{j,(\tau)}^{-1} \right]^{-1}, \\ \mu_{\beta_j,(\tau)} &= \Sigma_{\beta_j,(\tau)} \left( \sigma \kappa_{(\tau)}^2 \right)^{-1} \sum_{i=1}^n \left( Y_i - \theta_{(\tau)} z_{i,(\tau)} - \sum_{k=1, k \neq j}^p x_{ij} \beta_{j,(\tau)} \right) x_{ij}^2 z_{i,(\tau)}^{-1}, \\ r_{\sigma,(\tau)} &= r_{0,(\tau)} + \frac{3n}{2} + p \text{ and } s_{\sigma,(\tau)} = s_{0,(\tau)} + \sum_{i=1}^n \frac{\left( Y_i - \mathbf{X}_i \beta_{(\tau)} - \theta_{(\tau)} z_{i,(\tau)} \right)^2}{2\kappa_{(\tau)}^2 z_{i,(\tau)}} + \sum_{i=1}^n z_{i,(\tau)} + \sum_{j=1}^p \frac{v_{j,(\tau)}}{2\lambda_j^2}. \end{split}$$

Algorithm 2: Bayesian Analog Doubly Robust (BADR) estimation for QTEs

- Data:  $\{Y_i, T_i, \mathbf{X}_i\}_{i=1}^n, \tau \in (0, 1)$ Result:  $\widehat{QTE}^{dr}(\tau)$
- 1 Fit treatment assignment model on  $\{T_i, \mathbf{X}_i\}_{i=1}^n$  and obtain B posterior samples  $\{\pi^{(b)}(\mathbf{X})\}_{b=1}^B$
- <sup>2</sup> for  $\underline{t=0,1}$  do
- s | Fit outcome model on  $\{Y_i, \mathbf{X}_i\}_{i:T_i=t}$  and obtain B posterior samples  $\{G^{(b)}(y \mid t, \mathbf{X})\}_{b=1}^B$ end
- 4 Derive posterior mean from B posterior samples
- 5  $\hat{\pi}(\mathbf{X}) = \frac{1}{B} \sum_{b=1}^{B} \pi^{(b)}(\mathbf{X}) \text{ and } \hat{G}(y \mid t, \mathbf{X}) = \frac{1}{B} \sum_{b=1}^{B} G^{(b)}(y \mid t, \mathbf{X})$
- 6 Solve  $\hat{q}_1^{dr}(\tau), \hat{q}_0^{dr}(\tau)$  based on  $\hat{\pi}(\mathbf{X})$  and  $\hat{G}(y \mid t, \mathbf{X})$ , according to equations (1) and (2).

7 Calculate 
$$\widehat{QTE}^{dr}(\tau) = \hat{q}_1^{dr}(\tau) - \hat{q}_0^{dr}(\tau).$$

Algorithm 1

# Empirical Results: QTEs on Consumption **Description**



# Empirical Results: QTEs on Business Outcomes 🚥



Causal Inference on Quantiles in High Dimensions

- R. Alhamzawi, K. Yu, and D. F. Benoit. Bayesian adaptive lasso quantile regression. <u>Statistical Modelling</u>, 12(3): 279–297, 2012.
- J. Antonelli, G. Parmigiani, and F. Dominici. High-dimensional confounding adjustment using continuous spike and slab priors. <u>Bayesian analysis</u>, 14(3):805, 2019.
- J. Antonelli, G. Papadogeorgou, and F. Dominici. Causal inference in high dimensions: A marriage between bayesian modeling and good frequentist properties. Biometrics, 78(1):100–114, 2022.
- S. Athey, G. W. Imbens, and S. Wager. Approximate residual balancing: debiased inference of average treatment effects in high dimensions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(4):597–623, 2018.
- A. V. Banerjee. Microcredit under the microscope: What have we learned in the past two decades, and what do we need to know? <u>Annu. Rev. Econ.</u>, 5(1):487–519, 2013.
- H. Bang and J. M. Robins. Doubly robust estimation in missing data and causal inference models. <u>Biometrics</u>, 61(4):962–973, 2005.

# **Reference II**

- A. Belloni, V. Chernozhukov, and C. Hansen. Inference on treatment effects after selection among high-dimensional controls. <u>The Review of Economic Studies</u>, 81(2):608–650, 2014.
- C. Breunig, R. Liu, and Z. Yu. Double robust bayesian inference on average treatment effects. <u>arXiv preprint</u> arXiv:2211.16298, 2022.
- V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins. Double/debiased machine learning for treatment and structural parameters, 2018.
- V. Chernozhukov, W. K. Newey, and R. Singh. Automatic debiased machine learning of causal and structural effects. <u>Econometrica</u>, 90(3):967–1027, 2022.
- B. Crépon, F. Devoto, E. Duflo, and W. Parienté. Estimating the impact of microcredit on those who take it up: Evidence from a randomized experiment in morocco. <u>American Economic Journal: Applied Economics</u>, 7(1): 123–150, 2015.
- I. Díaz. Efficient estimation of quantiles in missing data models. Journal of Statistical Planning and Inference, 190:39–51, 2017.

# **Reference III**

- M. H. Farrell. Robust inference on average treatment effects with possibly more covariates than observations. Journal of Econometrics, 189(1):1–23, 2015.
- S. Firpo. Efficient semiparametric estimation of quantile treatment effects. <u>Econometrica</u>, 75(1):259–276, 2007.
- P. R. Hahn, C. M. Carvalho, D. Puelz, and J. He. Regularization and confounding in linear regression for treatment effect estimation. <u>Bayesian Analysis</u>, 13(1):163–182, 2018.
- P. R. Hahn, J. S. Murray, and C. M. Carvalho. Bayesian regression tree models for causal inference: Regularization, confounding, and heterogeneous effects (with discussion). <u>Bayesian Analysis</u>, 15(3): 965–1056, 2020.
- J. L. Hill. Bayesian nonparametric modeling for causal inference. <u>Journal of Computational and Graphical</u> <u>Statistics</u>, 20(1):217–240, 2011.
- J. P. Kaboski and R. M. Townsend. A structural evaluation of a large-scale quasi-experimental microfinance initiative. <u>Econometrica</u>, 79(5):1357–1406, 2011.

# **Reference IV**

- N. Kallus, X. Mao, and M. Uehara. Localized debiased machine learning: Efficient inference on quantile treatment effects and beyond. Journal of Machine Learning Research, 25(16):1–59, 2024.
- E. H. Kennedy. Semiparametric doubly robust targeted double machine learning: a review. <u>arXiv preprint</u> arXiv:2203.06469, 2022.
- Y. Luo, D. J. Graham, and E. J. McCoy. Semiparametric bayesian doubly robust causal estimation. <u>Journal of</u> <u>Statistical Planning and Inference</u>, 225:171–187, 2023.
- J. M. Robins and A. Rotnitzky. Semiparametric efficiency in multivariate regression models with missing data. Journal of the American Statistical Association, 90(429):122–129, 1995.
- O. Saarela, L. R. Belzile, and D. A. Stephens. A bayesian view of doubly robust causal inference. <u>Biometrika</u>, 103(3):667–681, 2016.
- D. O. Scharfstein, A. Rotnitzky, and J. M. Robins. Adjusting for nonignorable drop-out using semiparametric nonresponse models. Journal of the american statistical association, pages 1096–1120, 1999.
- H. Shin and J. Antonelli. Improved inference for doubly robust estimators of heterogeneous treatment effects. <u>Biometrics</u>, 2023.

- J. V. Spertus and S.-L. T. Normand. Bayesian propensity scores for high-dimensional causal inference: A comparison of drug-eluting to bare-metal coronary stents. <u>Biometrical Journal</u>, 60(4):721–733, 2018.
- D. A. Stephens, W. S. Nobre, E. E. Moodie, and A. M. Schmidt. Causal inference under mis-specification: Adjustment based on the propensity score (with discussion). <u>Bayesian Analysis</u>, 18(2):639–694, 2023.
- A. A. Tsiatis. Semiparametric theory and missing data, volume 4. Springer, 2006.
- M. J. Van Der Laan and D. Rubin. Targeted maximum likelihood learning. <u>The international journal of</u> biostatistics, 2(1), 2006.
- D. Xu, M. J. Daniels, and A. G. Winterstein. A bayesian nonparametric approach to causal inference on quantiles. <u>Biometrics</u>, 74(3):986–996, 2018.
- Z. Zhang, Z. Chen, J. F. Troendle, and J. Zhang. Causal inference on quantiles with an obstetric application. <u>Biometrics</u>, 68(3):697–706, 2012.