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Introduction

• Q: How can we investigate causal effects of an intervention on the entire distribution of
outcomes when randomized experiments are unavailable?

• Quantile treatment effects matter: if impact is heterogeneous, average treatment effect may
hide large positive and negative impacts.

• Relevant applications entail social welfare implications: financial interventions, education
programs, public health policies, etc.

• I develop Bayesian tools to estimate quantile treatment effects in an observational study with
potentially high-dimensional covariates.
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Beyond Average: Quantile Treatment Effects

• For each quantile level τ ∈ [0, 1]

QTE(τ) := F−1
1 (τ)− F−1

0 (τ) = q1(τ)− q0(τ)
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Identification: Conditional on Observables

• Q: Can’t observe counterfactual outcomes, how do we even identify QTEs?

Y (1), Y (0)

potential outcomes

⊥ T
treatment

| X
controls

=⇒ Ft(y) =

∫
X
G(y | T = t,X = x)

conditional distribution

dFX(x), for t ∈ {0, 1}.

• Remained obstacles:

• The number of possible controls is large, but specific controls needed are unknown.
• Conditional distribution is itself a complex function.

=⇒ this forces us to consider high dimensions.
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This Paper

♣ Main contribution:
A Bayesian Analog of Doubly Robust (BADR) approach for estimation and inference on
unconditional QTEs in presence of potentially high-dimensional covariates.

• Double Robustness
utilize both treatment assignment model and outcome model to provide double protection against
model misspecification.

• Adaptability to High Dimensions
incorporate Bayesian flexible data-driven methods to accommodate high-dimensional covariates
and non-linear relationships while achieving proper uncertainty quantification.
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Setup

• T and Y are a binary treatment and the outcome of interest;
X is a p-dimensional vector of covariates.

• Y (1) and Y (0) are the treated and untreated potential outcomes;
F1(y) and F0(y) are corresponding cumulative distribution functions.

• For each quantile level τ ∈ [0, 1]

QTE(τ) := F−1
1 (τ)− F−1

0 (τ) = q1(τ)− q0(τ)

which can be identified from observational data under Conditional-on-Observables, Positivity,
and SUTVA assumptions.
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Setup

• General QTE estimation problem from observational data involves nuisance functions:

 G(y | 1,X) = P[Y ≤ y | T = 1,X] and G(y | 0,X) = P[Y ≤ y | T = 0,X] are the conditional
distributions of outcome Y given (T,X).

 π(X) = P(T = 1 | X) is the propensity score - the probability of receiving active treatment given
covariates X.
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Doubly Robust Estimator

Q̂TE
dr
(τ) = q̂dr1 (τ)− q̂dr0 (τ), for each τ ∈ [0, 1]. (*)

• q̂dr1 is the solution to

1

n

n∑
i=1

Ti

π̂(Xi)

[
1(Yi ≤ q1)− Ĝ(q1 | 1,Xi)

]
+ Ĝ(q1 | 1,Xi)− τ = 0. (1)

• q̂dr0 is the solution to

1

n

n∑
i=1

1− Ti

1− π̂(Xi)

[
1(Yi ≤ q0)− Ĝ(q0 | 0,Xi)

]
+ Ĝ(q0 | 0,Xi)− τ = 0. (2)
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Doubly Robust Estimator

 

Q̂TE
dr
(τ) = q̂dr1 (τ)− q̂dr0 (τ), for each τ ∈ [0, 1]. (*)

• θ̂dr is the solution to

1

n

n∑
i=1

Ti

π̂(Xi)
[1(Yi ≤ θ)− η̂(Xi, θ)] + η̂(Xi, θ)− τ = 0. (1)

• q̂dr0 is the solution to

1

n

n∑
i=1

1− Ti

1− π̂(Xi)

[
1(Yi ≤ q0)− Ĝ(q0 | 0,Xi)

]
+ Ĝ(q0 | 0,Xi)− τ = 0. (2)
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Doubly Robust Estimator

• Q: Why Double Robustness property? What does θ̂dr estimate?

• Estimating equation is built upon an efficient influence function (Robins and Rotnitzky, 1995; Tsiatis,
2006; Kennedy, 2022) tailored to quantiles → first-order insensitivity to perturbations in nuisances.

• 1st view: Augmented OR (outcome regression) estimating equation

0 =
1

n

n∑
i=1

[η̂(Xi, θ)− τ ] +
1

n

n∑
i=1

Ti [1(Yi ≤ θ)− η̂(Xi, θ)]

π̂(Xi)
.

• 2nd view: Augmented IPW (inverse-probability-weighting) estimating equation

0 =
1

n

n∑
i=1

Ti [1(Yi ≤ θ)− τ ]

π̂(Xi)
+

1

n

n∑
i=1

[Ti − π̂(Xi)] [η̂(Xi, θ)− τ ]

π̂(Xi)
.
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Doubly Robust Estimator
• Q: Why Double Robustness property? What does θ̂dr estimate?

• 1st view: Augmented OR estimating equation; when n −→ ∞,
if outcome regression model is corrected specified

0 = E [ηtrue(X, θ)− τ ] +

0

E

{
T [1(Y ≤ θ)− ηtrue(X, θ)]

π(X)

}
.

• 2nd view: Augmented IPW estimating equation; when n −→ ∞,
if treatment assignment model is corrected specified

0 = E

{
T [1(Y ≤ θ)− τ ]

πtrue(X)

}
+

0

E

{
[T − πtrue(X)] [η(X, θ)− τ ]

πtrue(X)

}
.

➡ θ̂dr remains consistent even if one of the treatment assignment model or the outcome regression
model is misspecified.
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High-dimensional Modeling

1 Propensity score: π(X) = P(T = 1 | X)

Fit a binary Bayesian Additive Regression Trees (BART) model:

P(Ti = 1 | Xi) = H [fBART(Xi)] , (1)

where H is either the probit link or logistic link function, and

fBART(Xi) =

M∑
m=1

ftree (Xi; Γm, µm) are sum of M Bayesian regression trees.

Hierarchical priors:
1. independent priors over tree structures Γm

2. independent priors over leaf parameters µm,
given the tree.

B posterior draws b = 1, . . . , B:

π(b)(Xi) = H

[
M∑

m=1

ftree

(
Xi; Γ

(b)
m , µ(b)

m

)]
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High-dimensional Modeling

2 Conditional distributions:
G(y | 1,X) = P[Y ≤ y | T = 1,X] and G(y | 0,X) = P[Y ≤ y | T = 0,X].
N1. General connection of the conditional distribution with the conditional quantiles

FY |X(y) =

∫ 1

0

1{QY |X(τ) ≤ y}dτ discretization
=⇒ F̂Y |X(y) = ϵ+

S∑
s=1

δs1{Q̂Y |X(τs) ≤ y},

N2. Conditional quantiles are predictable by fitting Bayesian Quantile Regression for S quantile levels τs

Yi = Xiβ(τs) + ϵi(τs) where ϵi(τs) ∼ Assymetric Laplace (τ, 0, σ(τs)) .

Hierarchical priors:
1. priors for error distribution: location & scale.
2. priors for regression coefficients:
shrinkage priors can be incorporated.

B posterior draws b = 1, . . . , B:

Q(b)
i (τs) = Xiβ

(b)(τs)

G(b)(y | 1,Xi);G
(b)(y | 0,Xi)
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BADR-QTE Algorithm

Algorithm 1: Bayesian Analog Doubly Robust (BADR) estimation for QTEs
Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)

Result: Q̂TE
dr
(τ)

1 Fit treatment assignment model on {Ti,Xi}ni=1 and obtain B posterior samples {π(b)(X)}Bb=1

2 for t = 0, 1 do
3 Fit outcome model on {Yi,Xi}i:Ti=t and obtain B posterior samples {G(b)(y | t,X)}Bb=1

end
4 for b = 1, . . . , B do
5 Solve q

(b)
1 (τ), q

(b)
0 (τ) using π(b)(X) and G(b)(y | t,Xi), according to equations (1) and (2).

6 Calculate QTE(b)(τ) = q
(b)
1 (τ)− q

(b)
0 (τ).

end
7 Calculate Q̂TE

dr
(τ) = 1

B

∑B
b=1 QTE(b)(τ)

Algorithm 2
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Monte Carlo Study

♣ Benchmark:
• Naive estimator (Naive)

♣ Proposed estimators:
• Bayesian Doubly Robust estimator (BDR)
• Bayesian Doubly Robust estimator with a shrinkage prior (BDRS)

♣ Popular alternative estimators:
• Firpo’s (2007) Inverse Probability Weighted (FIPW)
• Dı́az’s (2017) Targeted Maximum Likelihood Estimation (TMLE)
• Xu et al.’s (2018) Bayesian Non-parametric (BNP)
• Kallus et al.’s (2024) Localized Debiased Machine Learning (LDML)
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Data Generating Process
♣ Linear setting with varying p/N :

p = 40;N ∈ {100, 500, 1000}

X1, X2, . . . , X40
iid∼ Normal (0, 1)

T | X ∼ Bernoulli (π(X))

Y (0) | X ∼ Normal
(
µ(X), 2.52

)
Y (1) | X ∼ Normal

(
1 + µ(X), 3.752

)
Y = T × Y (1) + (1− T )× Y (0)

where π(X) = {1 + exp [−(X1 +X2 +X3)]}−1,

µ(X) = X1 +X2 +X4 +X5
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Data Generating Process

• True QTEs (population parameters of interest)
∆0.10 = −0.34,∆0.25 = 0.29,∆0.5 = 1,∆0.75 = 1.70,∆0.90 = 2.34
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Table 1. Comparison of point estimates for QTEs and 95% CI across 100 replicates.
(N = 1000, p = 40)
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Figure 1.
Sampling distributions of
bias for QTEs across 100

replicates.
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Table 2. Average Bias.
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Table 3. Relative Mean Absolute Error.
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Remarks

• BDR and BDRS showcase a substantial improvement in bias reduction for QTE estimates, proving
beneficial in modeling the conditional distribution of potential outcomes given confounders.

• BDRS provides extra merit thanks to its adaptation to high-dimensional covariates by
augmenting with shrinkage priors.
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Welfare Impact of Household Financial Access

♣ Q: Unconditional quantile treatment effects of loan access
on household consumption and business outcome?

• Dynamic general equilibrium: Borrowers differ in their investment opportunities and productivity.
→ Potential winners and losers to financial market expansion (Kaboski and Townsend, 2011;
Banerjee, 2013).

• Evaluation is often limited in average treatment effect or randomization.

• Revisit Crépon et al.’s (2015) microcredit study across 162 Moroccan villages.
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Household Consumption and Business Outcomes

Table 4. Summary Statistics of Household Outcomes.
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Household Consumption and Business Outcomes
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Control Variables

Table 5. Covariate Balance between Borrowers and Non-borrowers.
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Table 6. Quantile Treatment Effects of Loan Access on Household Outcomes. Graphs

Causal Inference on Quantiles in High Dimensions 31 / 46



QTEs on Total Profit

−10,000

0

10,000

0.1 0.25 0.5 0.75 0.9
Quantile level

BDRS Est (QTE and 95% CI)

Naive ATE

Naive QTE

Quantile Treatment Effect

• Evidence of systematic harm in terms of total profit: a segment of households may experience
adverse effects that extend the lower tail of the distribution leftward.
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Conclusion

1 Quantile Treatment Effect, while posing technical challenges, is a worthwhile causal estimand
to uncover treatment effect heterogeneity and distributional impacts.

2 This paper proposes flexible BADR-QTE estimation framework for observational studies:
• double robustness & adaptability to high-dimensional covariates.
• substantial bias reduction compared to popular alternative estimators.
• microcredit application: value added in characterizing heterogeneous distributional impacts on

outcomes and detecting changes in household inequality.

3 Future extensions: improve computation for inference; embrace unmeasured confounding.

Thank you!
https://duongtrinhss.github.io/

Causal Inference on Quantiles in High Dimensions 33 / 46

https://duongtrinhss.github.io/


Bayesian Additive Regression Tree (BART)

♣ The prior of BART is specified for three components:
• The ensemble structure {Γm}Mm=1

Pr(split |
tree depth

d ) = α(1 + d)−β

where α ∈ (0, 1), β ∈ (0,∞).

⇒ Γm ∼ Pα,β

• The parameters {µm}Mm=1 associated with the terminal nodes given {Γm}Mm=1

µm,l
iid∼ N (0, v) (2)

• The error variance σ2 that is independent with the former two

σ2 ∼ Inv-Gamma (r, s) (3)
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Bayesian Quantile Regression (BQR)

For i = 1, . . . , n

Yi = Xiβ(τ) + ϵi,(τ)

Yi = Xiβ(τ) + θ(τ)zi,(τ) + κ(τ)
√
σ(τ)zi,(τ)ui

• Prior specification

β(τ) ∼ Np (0, λ× Ip) , (4)
zi,(τ) ∼ Exp

(
σ(τ)

)
∀i = 1, . . . , n, (5)

σ(τ) ∼ Inv-Gamma
(
r0,(τ), s0,(τ)

)
, (6)

where λ is fixed and known for all τ .
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• The conditional posteriors are of the form

β(τ) | • ∼ Np

(
µβ,(τ),Σβ,(τ)

)
, (7)

zi,(τ) | • ∼ GIG
(
1

2
, ai,(τ), bi,(τ)

)
, ∀i = 1, . . . , n, (8)

σ(τ) | • ∼ Inv-Gamma
(
rσ,(τ), sσ,(τ)

)
, (9)

where
Σβ,(τ) =

(
X⊤U−1X+Σ−1

0,(τ)

)−1

and µβ,(τ) = Σβ,(τ) ×X⊤U−1 (Y − θ(τ)z(τ)
)
,

U =
(
σ(τ)κ

2
(τ)

)
× diag

(
z(τ)

)
, z(τ) =

(
z1,(τ), . . . , zn,(τ)

)′
ai,(τ) =

1

σ(τ)

(
2 +

θ2(τ)
κ2
(τ)

)
and bi,(τ) =

(
Yi −Xiβ(τ)

)2
σ(τ)κ2

(τ)

,

rσ,(τ) = r0,(τ) +
3n

2
and sσ,(τ) = s0,(τ) +

n∑
i=1

(
Yi −Xiβ(τ) − θ(τ)zi,(τ)

)2
2κ2

(τ)zi,(τ)
+

n∑
i=1

zi,(τ).
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Bayesian Adaptive Lasso Quantile Regression

For i = 1, . . . , n

Yi = Xiβ(τ) + θ(τ)zi,(τ) + κ(τ)
√
σ(τ)zi,(τ)ui

• Hierarchical Priors

βj,(τ), vj,(τ) | σ(τ), λ
2
j,(τ) ∼

1√
2πvj,(τ)

exp
{
−

β2
j,(τ)

2vj,(τ)

}
σ−1
(τ)

2λ2
j,(τ)

exp
{

−σ−1
(τ)

2λ2
j,(τ)

vj,(τ)

}
, (10)

λ2
j,(τ) ∼ Inv-Gamma

(
c0,(τ), d0,(τ)

)
, (11)

σ(τ) ∼ Inv-Gamma
(
r0,(τ), s0,(τ)

)
(12)
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• The conditional posteriors (Alhamzawi et al., 2012) are of the form
zi,(τ) | • ∼ GIG

(
1

2
, ai,(τ), bi,(τ)

)
, ∀i = 1, . . . , n, (13)

βj,(τ) | • ∼ N
(
µβj ,(τ)

,Σβj ,(τ)

)
, ∀j = 1, . . . , p, (14)

vj,(τ) | • ∼ GIG

1

2
,
σ−1
(τ)

λ2
j,(τ)

, β2
j,(τ)

 , (15)

σ(τ) | • ∼ Inv-Gamma
(
rσ,(τ), sσ,(τ)

)
, (16)

λ2
j,(τ) | • ∼ Inv-Gamma

(
c0,(τ) + 1, d0,(τ) + σ−1

(τ)
vj,(τ)/2

)
, (17)

where

ai,(τ) =
1

σ(τ)

(
2 +

θ2
(τ)

κ2
(τ)

)
and bi,(τ) =

(
Yi −Xiβ(τ)

)2
σ(τ)κ

2
(τ)

,

Σβj ,(τ)
=

[(
σκ2

(τ)

)−1
n∑

i=1

x2
ijz

−1
i,(τ)

+ v−1
j,(τ)

]−1

,

µβj ,(τ)
= Σβj ,(τ)

(
σκ2

(τ)

)−1
n∑

i=1

Yi − θ(τ)zi,(τ) −
p∑

k=1,k ̸=j

xijβj,(τ)

x2
ijz

−1
i,(τ)

,

rσ,(τ) = r0,(τ) +
3n

2
+ p and sσ,(τ) = s0,(τ) +

n∑
i=1

(
Yi −Xiβ(τ) − θ(τ)zi,(τ)

)2
2κ2

(τ)
zi,(τ)

+
n∑

i=1

zi,(τ) +

p∑
j=1

vj,(τ)

2λ2
j

.
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BADR-QTE Algorithm

Algorithm 2: Bayesian Analog Doubly Robust (BADR) estimation for QTEs
Data: {Yi, Ti,Xi}ni=1, τ ∈ (0, 1)

Result: Q̂TE
dr
(τ)

1 Fit treatment assignment model on {Ti,Xi}ni=1 and obtain B posterior samples {π(b)(X)}Bb=1

2 for t = 0, 1 do
3 Fit outcome model on {Yi,Xi}i:Ti=t and obtain B posterior samples {G(b)(y | t,X)}Bb=1

end
4 Derive posterior mean from B posterior samples
5 π̂(X) = 1

B

∑B
b=1 π

(b)(X) and Ĝ(y | t,X) = 1
B

∑B
b=1 G

(b)(y | t,X)

6 Solve q̂dr1 (τ), q̂dr0 (τ) based on π̂(X) and Ĝ(y | t,X), according to equations (1) and (2).
7 Calculate Q̂TE

dr
(τ) = q̂dr1 (τ)− q̂dr0 (τ).

Algorithm 1
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Empirical Results: QTEs on Consumption back

back
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Empirical Results: QTEs on Business Outcomes back
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