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Introduction

X Stable-UnitTreatment-Value-Assumption{SUTVA):
= Spillovers aka Interference:

Units are also affected by the treatment status of others.

X Uneenfoundedness:

= Endogenous selection into treatment:

Treatment assignment is influenced by unobserved factors that also affect the outcome.

= | propose a model and Bayesian methods that use observational (network/spatial) data to
estimate direct and indirect causal effects while taking account of unobserved heterogeneity.
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Motivating Examples

@ Q: Causal effects of Opportunity Zone (OZ) program on census tracts’ economic development?
Endogenous selection: unobservable characteristics in OZ program assignment process may be
related to regional economics performance.

Spatial Interference: when OZ program is introduced in a census tract, surrounding areas not
designated as OZs would also be affected.

® Q: Causal effects of SEL-focused after-school program on students’ prosocial development?

Endogenous selection: participation is not mandatory; consequently, students who sign up may be
inherently different from non-participants in ways that are related to the outcome being measured.

Network Interference: enrolled-students might also interact with their peers who are not assigned to
the program, leading to knowledge transfer or behavioral influence.
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Related Literature |

@ Violation of SUTVA — Spillovers

Partial interference: spillovers occur within clusters but not across clusters.
Sobel (2006), Hudgens and Halloran (2008), Manski (2013), DiTraglia et al. (2023), etc.

— limited settings when units naturally cluster a significant distance apart.

General interference: using network/spatial data to define the form of spillovers.
Randomized experiments on social networks
Toulis and Kao (2013), Aronow and Samii (2017), Leung (2020), Yuan and Altenburger (2022), etc.

Observational studies
van der Laan and Sofrygin (2017), Forastiere et al. (2021), Forastiere et al. (2022), Ogburn et al.

(2022), Sanchez-Becerra (2022), Leung and Loupos (2022), etc.

— reliance on unconfoundedness, little exploration of selection on unobservables.
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Related Literature Il

® Endogenous Selection Models
Gaussian generalised Roy model (Li et al., 2004; Heckman et al., 2014), etc.

Sample selection models (Ding, 2014; Dogan and Taspinar, 2018), etc.
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Contributions

% New method to estimate direct and indirect causal effects in the presence of endogenous
selection into treatment and spillovers.

% Key idea: explicitly models endogenous selection into treatment and employs network/spatial
data to capture spillovers in the form of a neighbourhood treatment term.
® allows for heterogeneous direct effects across individuals.
® allows for general interference.

® embraces Bayesian methods to facilitate straightforward estimation and inference and to relax
parametric assumptions (further steps).
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General Setup

® There are n agents:

® ndividual Treatment

~ Self-selection process:

e Neighborhood Treatment
~ A summary measure:

® Treated and Untreated
Potential Outcomes:

® Revealed Outcome:

unobservable
resistance
to treatment

D, =1{v(Z;, X;) > Vi
from
adjacency
B N matrix
D_/\/’i = Z Wi j Dj

J=1j#i

}/7;(1) — NI(DNqu) +€(1)

7

Y” = po(Dwi, Xi) + €

Y, = Diy'i(l) + (1 _ Di)Y;'(O)
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Exposure to the policy

s ca

e Individual Treatment * treated © untreated
Individual Treatment © treated © untreated

Neighborhood Treatment - 000 © 025 () 050 (| 075
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The Model

& Parametric Model

D; =1{aZ; + 8P X; + EED) > 0}

N
D./\/i = Z ’Ujiij
J=1.j#i

Yi(l) = WPy + VX, Jre1(41)
Y;»(O) = 5(O)DNZ + 5(0)X1 + EEO)

Y, = DY 4 (1-Dy)

% Assumptions

AL (eP) e NT | (X, 7))

i i 0T

A2, (P €M (NT i Ar (0, 33)

[ A A )

1 oip oop
Y= (T% 010

a8

A3. YV(dy) L D | Xi Vdy € [0,1]
dy
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Causal Estimands

& Indirect Causal Effects
® Dyi=dy — dy +A;  hold D; = d fixed.

* Average Indirect effect when untreated ~ AITE®M (dy, A) == E [Yim@v +A) - Y;“)(JN)]
* Average Indirect effect when treated AIE® (dy,A) = E [Yi(o)(c?/\r +A) - Yi(O)(JN)]
& Direct Causal Effects

e D;,=0—1; hold Dy; = dy fixed.

® Average Direct Treatment Effect

ADTE(dx) =E [YV =Y | dy, X]
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Causal Estimands

e Average Partial Indirect Effects

Treated: §W
Untreated: §©

E[Y," | Dy: = dy]

e Average Direct Treatment Effect

(o‘<1> - o‘<0>) dy + <“3<1> - ‘3<0>) E [X|]
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Beyond Average

e Marginal Direct Treatment Effect

unobservable
resistance
to treatment

MDTE (dy,v) = E [Yi(l) — Y | Dy = dy. Vico , Xz}
= (50 = 6@) dy + B [ = | Vi = o] + (80— 5O) ELX)

= (60 =6y = (71p—00p) F7H0)+ (8V - 50) E[Xi).

patterns of patterns of
interaction effects selection into treatment
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Marginal Direct Treatment Effects

Positive Interaction, Selection on Gain Negative Interaction, Selection on Gain
2.0
1.5
> 154 >
5 & 104
= =
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Z g 10
i} i}
= 104 =
a a
= S o054
054
0.04
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Estimation and Inference

e We develop estimators for parameters 6(1), 5(9, (1) 580 &, 1 o4p, and in turn for causal

estimands.

® Rewrite: P; = [Z;, X;],v = [Q’B(D)]’,
and Q; = [Dni, X5/, B1 = [5(1)75(1)}’, By = [5(0)’5(0)}'_

® The model can be more compactly written as

D; =Py +e”

v = Qﬂl+e
Y% = Qifio +€ff
D; = 1{D; > 0}

Y, = DiY;(l) +(1- Di)Yi(O)

.. similar to the Generalised Roy Model (Heckman and Vytlacil, 2007).
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Estimation and Inference

% Rewrite model in a compact form Y 7O YO D D
obs. 034 188 034 0 -294

D =Py +e” obs2 085 024 085 0 -644

1 1 obs.3 155 155 215 1 063

v = Qi+ obs4 050 145 05 0 -1.12

v = QiBy + ¥ obs5 401 401 349 1 362

' obs6 353 353 098 1 0.79

obs7 350 35 249 1 662

D; =1{D; >0} obs8 081 16 081 0 -266

2

unobservable!
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A Missing Data Perspective?

% Simplified Model

DZ—PZ'y—Fe(D)
(') = Q5 +e (1)
:Qi50+€i0)

D, =1{D; >0}
Vi =Dv'V +(1

—D,)Y,

(A

(0)

% Bayesian Data Augmentation

Self-selection and Spillovers

® |mputation step (I-step): impute the missing

data given the observed data and model
parameters.

® Posterior step (P-step): update the posterior

distributions of model parameters given
completed data.
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Estimation Algorithm

Algorithm 1: Bayesian Data Augmentation
Data: {Y;, D;, P;, Qi}iL,

Result: A, where A is parameter of interest.

1 Procedure
2 Initialize parameters s = 0,09 £ for MCMC-chains
3 while s < S do
4 | Sample VT from p(V,,... | Y, D, 6, 5l
5 Sample DB from p(D* | Y, D, 6l %l
6 | Sample 0+ from p(@ | Y, D, X, v pelstily
7 | Sample ZE+ from p(X | Y, D, gls+t y I pelsrily
8 Derive Als+1
end
o Calculate A = 3 Zinbﬂ Al

10 end procedure
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Simulation - DGP

Fori=1,...,nandk=1,...,5:

Zi X150+, Xsi 2 N(0,1),
B g 5O g 1y,
D=1 {1.5Zi + X580 4P > 0} ,

N

DNi = Z 'U','J'.Dj, Z ’UJij = ].,

=L =L
SM Dy + 2+ X80 + el(-l)
" 69Dy 4 1+ X80 4+ 0

where weight matrix 17 is block diagonal and row-normalized (Liu and Lee, 2010).
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Simulation - Scenarios

@ Sample size n € {100, 500, 1000}

® The presence of spillovers
e with spillovers: 6" =1.5; 5% =05
e nospillovers: ¢ =45 =0

©® The joint distribution of the error terms
® normality -fori=1,...,n

N 109 07
€ = [€§D>,e(1>,e(0)] lr@./\/'((), ¥); = 1 06

i 7 i

® non-normality -fori=1,...,n
"iia 1 2
€ = |:E<D) M e(.o)} (9 gN (0,%1) + 5/\/' (0,%2)

A S A )

Self-selection and Spillovers 19/35



Quantities of Interest

Model Metric n S 50 5D — 50 51— ooD
True Value 1500 0.500  1.000 0.200
500 21500 -0.500  -1.000 -0.035
Bias 1000 -1.500 -0.500  -1.000 -0.021
5000 -1.500 -0.500  -1.000 -0.004
500 1500 0.500  1.000 0.134
GGRM-noSIL  pyjp 1000 1500 0500  1.000 0.093
Table 1. 5000 1500 0500  1.000 0.044
Simulation results across 500 0.000  0.000  0.000 0.947
1000 replicates. Coverage 1000 0.000 0.000  0.000 0.947
5000 0.000 0.000  0.000 0.947
500 20.001 -0.024  0.023 -0.050
Bias 1000 0.000 0.007  -0.007 -0.028
5000 0.000 0.000  0.000 -0.006
500 0226 0244  0.334 0.133
GGRM-SI gy isp 1000 0144 0171 0225 0.089
5000  0.066 0.077  0.100 0.040
500 0954 0946  0.954 0.934
Coverage 1000 0.968 0.950  0.953 0.947
5000 0.960 0951  0.960 0.957
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Table 2. Simulation Results for Average Direct Treatment Effects

n = 500 n = 1000 n = 5000
Model Grid Bias RMSE  Coverage Bias RMSE  Coverage Bias RMSE  Coverage

0.1 0.419 0.437 0.098 0.408 0.418 0.007 0.401 0.403 0.000

0.2 0.319 0.343 0.302 0.308 0.321 0.083 0.301 0.303 0.000

0.3 0.219 0.252 0.605 0.208 0.227 0.377 0.201 0.204 0.001

0.4 0.119 0.173 0.880 0.108 0.141 0.776 0.101 0.108 0.284

GGRM-noSI 0.5 0.019 0.127 0.948 0.008 0.091 0.949 0.001 0.038 0.961
0.6 -0.081  0.149 0.905 -0.092  0.129 0.813 -0.099  0.106 0.291

0.7  -0.181 0.220 0.712 -0.192  0.212 0.451 -0.199  0.203 0.002

0.8 -0.281  0.308 0.423 -0.292  0.306 0.099 -0.299  0.302 0.000

0.9 -0.381  0.401 0.132 -0.392  0.402 0.007 -0.399  0.401 0.000

0.1 0.020 0.178 0.959 0.016 0.121 0.954 0.002 0.054 0.960

0.2 0.023 0.155 0.956 0.015 0.105 0.954 0.002 0.047 0.957

0.3 0.025 0.136 0.952 0.014 0.093 0.957 0.002 0.041 0.960

0.4 0.027 0.124 0.944 0.014 0.084 0.957 0.002 0.037 0.963

GGRM-SI 0.5 0.029 0.120 0.944 0.013 0.082 0.962 0.002 0.036 0.961
0.6 0.032 0.125 0.952 0.012 0.085 0.963 0.002 0.037 0.966

0.7 0.034 0.138 0.958 0.011 0.094 0.954 0.002 0.040 0.966

0.8 0.036 0.158 0.956 0.011 0.107 0.955 0.002 0.046 0.963

0.9 0.039 0.181 0.952 0.010 0.122 0.958 0.002 0.053 0.965
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RMSE Bias

Coverage

Figure 1. Simulation Results for Average Direct Treatment Effects
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Scenario 1’ - No Spillover

Table 3. Simulation Results for Scenario 1' (No spillover)

Quantities of Interest

Metric n 5 §O W 50 4 —oop
True Value 0.000 0.000 0.000 0.200
) 500 0.000 -0.024  0.023 -0.050
Bias 1000 0.000 0.007  -0.007 -0.028
5000 0.000  0.000  0.000 -0.006
500 0.227 0244  0.335 0.132
RMSE 1000 0144 0171  0.226 0.089
5000 0.066 0.077  0.100 0.040
500 0.952 0944  0.955 0.937
Coverage 1000 0.970  0.951 0.951 0.946
5000 0.957 0.951 0.956 0.953
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Simulation - Results (cont.)

Table 4. Simulation Results for Scenario 2’ (Non-normality)

Quantities of Interest

Metric n s 50 8M — 50 g1p —oop
True Value 1.500  0.500 1.000 0.200
_ 500 0.008 0.000  0.008 -0.012
Bias 1000 -0.002 -0.001  -0.002 0.005
5000 0.000 0.002  -0.002 0.025
500 0.238 0.264  0.352 0.190
RMSE 1000 0175 0188  0.260 0.135
5000 0.076  0.081 0.110 0.072
500 0.967 0.956  0.965 0.949
Coverage 1000 0.945  0.937 0.938 0.945
5000 0.962 0.958  0.960 0.904
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Simulation - Remarks

e Bayesian estimator performs well in terms of bias, RMSE and coverage rate.

e |nclusion of neighborhood treatment term is plausible, regardless of whether spillovers are
present in true DGP.

® Neglecting neighborhood treatment leads to a larger bias and a lower coverage rate, even when
the causal estimand is the direct treatment effect.
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Impact of the Opportunity Zones (OZ) tax incentive

% Q: Direct and indirect effects of OZ program on census tracts’ housing unit growth?

® Part of the Tax Cuts and Jobs Act (Dec 2017): offers investment tax incentives to designated census
tracts nationwide to promote economic development in distressed communities.

® Selection process:
eligibility: poverty rates above 20% or median family incomes below 80% of the area median income.
nomination: each state governor had 90-120 days to nominate 25% of their eligible tracts.
approval: on June 14, 2018, U.S. Treasury and IRS certified a list of Qualified Opportunity Zones (QOZs).

® Mixed evidence regarding impact on targeted areas and potential spillovers:
Corinth and Feldman (2024), Freedman et al. (2023), Chen et al. (2023), and Wheeler (2022), etc.
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OZ status mapping

California 06

R A

@ Eligible, not selected
Ineligible
@ selected

ot opnc
Maptles by Stamen Design, CC/8Y/3.0 - Map data (C) OpenStreatiap
Contributors b
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Model Specification

¢ |ndividual Treatment - being selected into the OZ program

K
QOZ; =1 {aPoliticali + 87 + 3 P Demographicy,; + ¢!®) > o}

k=1

® Neighborhood Treatment
Q0Z, = Y wy;Q0Z; Y wiy=1

J=1,j#i J=1,j#i
® Revealed Outcome
sMQOZ, + 5" + XK | B Demographicy ; + €, if QOZi =1
%A Housing; =
§9Q0Z, + B\ + XK | B Demographicy ; + €, if QOZ =0
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Eligible Census Tracts in California

Table 4. Summary Statistics and Balancing Tests

All tracts (n=3699) QOZs (n=727) Non-QOZs (n=2972) QOZs — Non-QOZs
Variables Mean (std) Mean (std) Mean (std) Diff. Mean t-statistic
Outcome
Housing Unit Growth 0.03 (0.17) 0.04 (0.14) 0.03 (0.17) 0.02 * 2.57
Observed Characteristics
Political Affiliation 0.79 (0.41) 0.82 (0.38) 0.78 (0.42) 004 ** 272
Poverty Rate 0.19 (0.09) 0.27 (0.09) 0.17 (0.08) 0.09 * 2464
Median Earnings 10.17 (0.31) 10.01 (0.26) 10.21 (0.30) -0.21  *** _18.60
Employment Rate 0.29 (0.07) 0.26 (0.07) 0.29 (0.07) 0.04 ** 1287
% White 0.56 (0.21) 0.53 (0.20) 0.56 (0.21) 004 ** 435
% Native 0.90 (0.04) 0.89 (0.04) 0.91 (0.04) 2002 F* 905
% Higher ed. 0.15 (0.09) 0.11 (0.07) 0.16 (0.09) -0.05  *¥** 1523
% Rent 0.57 (0.21) 0.67 (0.19) 0.54 (0.21) 0.13 *** 1647
Population 4509.55 (1613.93) 4305.31 (1476.18) 4559.51 (1642.24) -254.20  *E 407

Self-selection and Spillovers 29/35



Table 4.
Estimation Results

Mean Std LB UB

Treatment Decision Equation

Political Af filiation (a) 0.116  0.053 0.017  0.221

Intercept (BS2)) 1.184  1.141 -1.077 3.410

Poverty Rate (B)) 4.951  0.334 4.307 5.612

Median Income (8") -0.317 0.113 -0.538 -0.095

Employment Rate (852) 0.530  0.459 -0.350 1.423
Outcome Equation for QOZs

Neighborhood Treatment (§V)  0.033  0.017  0.001  0.067

TIntercept (8§") -0.573 0295 -1.164 0.001

Poverty Rate (8{") 0.857 0.101 0.667  1.054

Median Income (B5") 0.017  0.030 -0.041 0.074

Employment Rate (85") 0.057 0.109 -0.153  0.270
Outcome Equation for Non-QOZs

Neighborhood Treatment (5”)  0.025  0.014 -0.003  0.052

Intercept (B)”) 0718 0.152 -1.016 -0.420

Poverty Rate (ﬁio)) -0.308  0.050 -0.408 -0.212

Median Income (ﬁ;o)) 0.080 0.015 0.050 0.109

Employment Rate (85") -0.200 0.059 -0.315 -0.084
Pattern of Interaction Effect

Dty _50) 0.008  0.022 -0.035  0.051
Pattern of Selection into Treatment

Aoy p-oop 0.329 0.015 0.301  0.358
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Indirect Treatment Effects

by =aN]

E[Y(”\

Treated Potential Outcome

0.1

0.0

§,-0.0332
CI=[0.0011,0.0671]

11l

[ - I I

By =aN]

E[Y("’\

0.00

0.25 0.50 0.75 1.00

dy (neighborhood treatment)
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Untreated Potential Outcome

0.1

0.0

8,-0.025
Cl = [-0.0026,0.0523]

[ | N I | |

0.00

0.25 0.50 0.75 1.00
dy (neighborhood treatment)
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Average Direct Treatment Effects

Average Direct Treatment Effects

0.1
dy Mean (std) CI95
v 0.1 -0.1970 (0.0223) [-0.2413, -0.1546]
— R4~ 0.0081 0.2 -0.1962 (0.0219) [-0.2394, -0.1546]
i Cly s~ [ 0.0351, 0.051] 0.3 -0.1954 (0.0218) [-0.2377, -0.1544]
S o1 0.4 -0.1945 (0.0218)  [-0.2373, -0.1538]
< 0.5 -0.1937 (0.0221)  [-0.2373, -0.1532]
B B it e R R 0.6 -0.1929 (0.0225) [-0.2373, -0.1514]
0.7 -0.1921 (0.0232) [-0.2379, -0.1493]
o 0.8 -0.1913 (0.0241) [-0.2387, -0.1471]
---------------------------------------------------------------- 0.9 -0.1905 (0.0251)  [-0.2406, -0.1441]
-0.3
| 1 I Y A O | | L1 | |

0.00 025 _ 0.50 075 1.00
dn (neighborhood treatment)
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Marginal Direct Treatment Effects

Marginal Direct Treatment Effects

\ Rsro0,=0.0081
Cly.-s,=[~-0.0351,0.051]

A
A =0.3292

o1p-o00 =

Cl =[0.3013, 0.3584]

10-c00

L L i
0.00 025 0.50 0.75 1.00

v
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1.00

0.75

0.50

0.25

0.00

v Mean (std) CI95

0.1 0.2258 (0.0127)  [0.2010, 0.2506]
0.2 0.0809 (0.0137)  [0.0538, 0.1075]
0.3 -0.0235 (0.0162) [-0.0554, 0.0071]
04 -0.1127 (0.0190) [-0.1502, -0.0766]
0.5 -0.1961 (0.0219) [-0.2393, -0.1546]
0.6 -0.2796 (0.0251) [-0.3288, -0.2320]
0.7 -0.3688 (0.0286) [-0.4247, -0.3151]
0.8 -0.4732 (0.0329) [-0.5376, -0.4115]
0.9 -0.6181 (0.0391) [-0.6945, -0.5451]
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By Sub-populations

Table 4. Summary of Direct Treatment Effects

ADTE ADTT ADTUT
Mean (std) CI95 Mean (std) CI95 Mean (std) CI95
-0.196 (0.022) [-0.239, -0.155]  0.041 (0.015) [0.012, 0.069] -0.298 (0.026) [-0.349, -0.249)]

® Eligible but unselected tracts (non-QOZs) continue to face disadvantages: No positive spillover effects
found, and expanding the OZ tax credit to these communities would not be effective.

Self-selection and Spillovers
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Conclusion

@ Many policies we care about have Endogenous Selection into Treatment and Spillovers.

® need to be careful when estimating effects since certain restrictions are necessary to identify causal
estimands.

® My approach explicitly models endogenous selection into treatment and employs
spatial/network data to capture spillovers in the form of a neighborhood treatment term.

® allows for heterogeneous direct effects across individuals and general interference.

® embraces Bayesian methods to relax parametric assumptions (further steps).

Thank you!
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Empirical Monte Carlo Study

% | employ Add Health friendship network data and mimic an evaluation of Social-Emotional
Learning (SEL)-Focused After-School Programs on youth's prosocial development.

® jctual network structure defines the spillover patterns;
® real covariates are considered as observed characteristics;

® treatment and outcome are generated using different data generating processes to analyse
performance of the estimation procedures under different scenarios.
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Add Health friendship network data

® A nationally representative longitudinal study
of adolescents in grades 7-12 in the US
between September 1994 and April 1995.

® The largest community: n = 2534 students.

® Each node represents a student, and network
links are measured using student nomination
(i.e., their best friends, up to 5 females and up
to 5 males).
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Add Health friendship network data

Grade
7th
8th
oth
10th
11th
12th

School B

1st v
2nd

D
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Add Health friendship network data

Gender

*  male
*  female

Self-selection and Spillovers

Race
white
black

©  latinx
asian

* mixed
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Data Generating Process

Individual Treatment - enrolling in the SEL-focus after-school program

D;=1 {15Z1 - 0~2Xgender,i - Xgrade,i + Xrace,i + EED) > O}

Neighbourhood Treatment

D; = Z wij Dy Z wig =1

J=1,j#i J=1,j#1

Treated and Untreated Potential Outcomes

Y = 6D, 42— 0.5X genderi + 0.3Xgrade,s + 0.2Xrace,s + €.
Y =5 D; + 1+ 0.3Xgenderi — 04X grade,i + 0.1 X race,i + €.

Revealed Outcome
Y= DY, + (1 - D)y
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Treatment status - what if my friend is treated?

e Individual Treatment * treated © untreated
Individual Treatment © treated © untreated
E

Neighborhood Treatment - 000 © 025 () 050 () 075 () 1.00
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[2 x 2] scenarios

@ The presence of spillovers
* without spillovers: ¢ =5 =0
* with spillovers: 6 =1.5; 5 =0.5

® The joint distribution of the error terms

® anormal distribution - fori =1,...,n
. 1 09 07
6= [e§D>, e, e§°>] TN(0,8); T= 1 06
1
® g finite mixture of normal distribution - fori =1,... . n

(2 A )

"in 1 2
€ = [e(-D) e e(-o>] (5 §N (0,21) + §N (0,32)

% Simulation results:

® Bayesian estimator performs well in terms of bias, RMSE and coverage rate.

® |nclusion of neighbourhood treatment term is plausible, regardless of whether spillovers are present
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Spillovers exist: §(Y) = 1.5:6(0) = 0.5

Treated Potential Outcome Untreated Potential Outcome

3
z z
(k=] IS
"2 )
z z
=X =%
S g
> >
w w
1 1
A A
01 =1.6365 do=0.5127
0 Cl=[1.4692, 1.8043] 0 Cl=[0.3076, 0.7205]
[ A R NN N A RN RN [ R A U N AR N RN
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
dy (neighborhood treatment) dy (neighborhood treatment)
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Spillovers exist: §(Y) = 1.5:6(0) = 0.5

Average Direct Treatment Effects

4
3
5
[
z
o 2
5
>
]
e
w
A
Agpp,=1.1238
0 Cls,-s, = [0.8567, 1.3809]

[ O I I I B |
0.50 0.75 1.00

dn (neighborhood treatment)

| 8 L O B B
0.00 0.25
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Spillovers exist:

6 =1.560 =05

Marginal Direct Treatment Effects

Roypy=1.1238
Cly,_o, = [0.8567, 1.3809]

A
Aaypecny = 0.3681

Cl =[0.2236, 0.5316]

G1p-000

FEEEETEEEEEEEEEEEEEEEEER e meee e veee el

0.00

0.25 0.50 0.75
v
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1.00

1.00

0.75

0.50

0.25

0.00
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No Spillovers: §) = §0) = 0

Treated Potential Outcome Untreated Potential Qutcome

=
(k-1
o2
z
a
>
[}
1
$,-0.1381 $o-0.0118
0 0
Cl=[-0.0273,0.3087] Cl =[-0.1916,0.2168]
| A L N T A N A I AL I R N AN e R IR R A A |
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
dy, (neighborhood treatment) dy (neighborhood treatment)
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No Spillovers: §) = §0) = 0

Average Direct Treatment Effects

By
.

E{Y“LY""\

A, -0.1262
Cls,-s, = [ 0.1409, 0.3981]

| L T T T It I A A O N R B A |
0.25 0.75 1.00

0.00 B 0.50
dy (neighborhood treatment)
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No Spillovers: §() = §( = @

Marginal Direct Treatment Effects

6 ARy, 5, =0.1262
[-0.1409, 0.3981]

Ry = 0.3679

4 Cly oo = [0.2347,0.5196] dy
1.00
0.75
0.50

2 \ 0.25
0.00

[

R e T e T R LR B A A
0.00 0.25 0.50 0.75 1.00

v
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