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Introduction

✘ Stable Unit Treatment Value Assumption (SUTVA):
 Units are affected by their own treatment status.

➥ Spillovers aka Interference:
 Units are also affected by the treatment status of others.

✘ Unconfoundedness:
 No unobserved confounders that affect both treatment assignment and the outcome.

➥ Endogenous selection into treatment:
 Treatment assignment is influenced by unobserved factors that also affect the outcome.

➥ I propose a model and Bayesian methods that use observational (network/spatial) data to
estimate direct and indirect causal effects while taking account of unobserved heterogeneity.
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Motivating Examples

1 Q: Causal effects of Opportunity Zone (OZ) program on census tracts’ economic development?
 Endogenous selection: unobservable characteristics in OZ program assignment process may be

related to regional economics performance.

 Spatial Interference: when OZ program is introduced in a census tract, surrounding areas not
designated as OZs would also be affected.

2 Q: Causal effects of SEL-focused after-school program on students’ prosocial development?
 Endogenous selection: participation is not mandatory; consequently, students who sign up may be

inherently different from non-participants in ways that are related to the outcome being measured.

 Network Interference: enrolled-students might also interact with their peers who are not assigned to
the program, leading to knowledge transfer or behavioral influence.
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Related Literature I

1 Violation of SUTVA → Spillovers

 Partial interference: spillovers occur within clusters but not across clusters.
 Sobel (2006), Hudgens and Halloran (2008), Manski (2013), DiTraglia et al. (2023), etc.

 → limited settings when units naturally cluster a significant distance apart.

 General interference: using network/spatial data to define the form of spillovers.
 Randomized experiments on social networks

Toulis and Kao (2013), Aronow and Samii (2017), Leung (2020), Yuan and Altenburger (2022), etc.

 Observational studies
van der Laan and Sofrygin (2017), Forastiere et al. (2021), Forastiere et al. (2022), Ogburn et al.
(2022), Sanchez-Becerra (2022), Leung and Loupos (2022), etc.

 → reliance on unconfoundedness, little exploration of selection on unobservables.
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Related Literature II

2 Endogenous Selection Models
 Gaussian generalised Roy model (Li et al., 2004; Heckman et al., 2014), etc.

 Sample selection models (Ding, 2014; Doğan and Taşpinar, 2018), etc.
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Contributions

♣ New method to estimate direct and indirect causal effects in the presence of endogenous
selection into treatment and spillovers.

♣ Key idea: explicitly models endogenous selection into treatment and employs network/spatial
data to capture spillovers in the form of a neighbourhood treatment term.

• allows for heterogeneous direct effects across individuals.
• allows for general interference.
• embraces Bayesian methods to facilitate straightforward estimation and inference and to relax

parametric assumptions (further steps).
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General Setup

• There are n agents:
i = 1, . . . , n (1)

• Individual Treatment
∼ Self-selection process:

Di = 1{ν(Zi, Xi) ≥

unobservable
resistance

to treatment︷︸︸︷
Vi } (2)

• Neighborhood Treatment
∼ A summary measure:

D̄N i =

N∑
j=1,j ̸=i

from
adjacency

matrix︷︸︸︷
wij Dj (3)

• Treated and Untreated
Potential Outcomes: Y

(1)
i = µ1(D̄N i, Xi) + ϵ

(1)
i (4)

Y
(0)
i = µ0(D̄N i, Xi) + ϵ

(0)
i (5)

• Revealed Outcome:
Yi = DiY

(1)
i + (1−Di)Y

(0)
i (6)
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Exposure to the policy
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The Model

♣ Parametric Model

Di = 1{αZi + β(D)Xi + ϵ
(D)
i ≥ 0}

D̄N i =

N∑
j=1,j ̸=i

wijDj

Y
(1)
i = δ(1)D̄N i + β(1)Xi + ϵ

(1)
i

Y
(0)
i = δ(0)D̄N i + β(0)Xi + ϵ

(0)
i

Yi = DiY
(1)
i + (1−Di)Y

(0)
i

♣ Assumptions

A1. (ϵ
(D)
i , ϵ

(1)
i , ϵ

(0)
i )T ⊥ (Xi, Zi)

A2. (ϵ
(D)
i , ϵ

(1)
i , ϵ

(0)
i )T

ind∼ N (0,Σ)

Σ =

1 σ1D σ0D

σ2
1 σ10

σ2
0



A3. Y
(1)
i (d̄N ) ⊥ D̄N i | Xi ∀d̄N ∈ [0, 1]

Y
(0)
i (d̄N ) ⊥ D̄N i | Xi ∀d̄N ∈ [0, 1]
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Causal Estimands

♣ Indirect Causal Effects

• D̄N i = d̄N → d̄N +∆; hold Di = d fixed.

• Average Indirect effect when untreated AIE(1)(d̄N ,∆) := E
[
Y

(1)
i (d̄N +∆)− Y

(1)
i (d̄N )

]
• Average Indirect effect when treated AIE(0)(d̄N ,∆) := E

[
Y

(0)
i (d̄N +∆)− Y

(0)
i (d̄N )

]
♣ Direct Causal Effects

• Di = 0 → 1 ; hold D̄N i = d̄N fixed.

• Average Direct Treatment Effect

ADTE(d̄N ) := E
[
Y

(1)
i − Y

(0)
i | d̄N , Xi

]
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Causal Estimands

• Average Partial Indirect Effects

Treated: δ(1)

Untreated: δ(0)

• Average Direct Treatment Effect(
δ(1) − δ(0)

)
d̄N +

(
β(1) − β(0)

)
E [Xi]
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Beyond Average

• Marginal Direct Treatment Effect

MDTE
(
d̄N , v

)
:= E

[
Y

(1)
i − Y

(0)
i | D̄N i = d̄N ,

] unobservable
resistance

to treatment︷ ︸︸ ︷
Vi = v

[
, Xi

]
=

(
δ(1) − δ(0)

)
d̄N + E

[
ϵ
(1)
i − ϵ

(0)
i | Vi = v

]
+
(
β(1) − β(0)

)
E [Xi]

=
(
δ(1) − δ(0)

)
patterns of

interaction effects

d̄N −
(
σ1D − σ0D

)
patterns of

selection into treatment

F−1(v) +
(
β(1) − β(0)

)
E [Xi] .
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Marginal Direct Treatment Effects
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Estimation and Inference

• We develop estimators for parameters δ(1), δ(0), β(1), β(0), σ1D, σ0D , and in turn for causal
estimands.

• Rewrite: Pi = [Zi, Xi], γ =
[
α, β(D)

]′
,

and Qi = [D̄N i, Xi]
′, β1 =

[
δ(1), β(1)

]′, β0 =
[
δ(0), β(0)

]′.
• The model can be more compactly written as

D∗
i = Piγ + ϵ

(D)
i

Y
(1)
i = Qiβ1 + ϵ

(1)
i

Y
(0)
i = Qiβ0 + ϵ

(0)
i

Di = 1{D∗
i ≥ 0}

Yi = DiY
(1)
i + (1−Di)Y

(0)
i

. . . similar to the Generalised Roy Model (Heckman and Vytlacil, 2007).
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Estimation and Inference

♣ Rewrite model in a compact form

D∗
i = Piγ + ϵ

(D)
i

Y
(1)
i = Qiβ1 + ϵ

(1)
i

Y
(0)
i = Qiβ0 + ϵ

(0)
i

Di = 1{D∗
i ≥ 0}

Yi = DiY
(1)
i + (1−Di)Y

(0)
i

unobservable!
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A Missing Data Perspective?

♣ Simplified Model

D∗
i = Piγ + ϵ

(D)
i

Y
(1)
i = Qiβ1 + ϵ

(1)
i

Y
(0)
i = Qiβ0 + ϵ

(0)
i

Di = 1{D∗
i ≥ 0}

Yi = DiY
(1)
i + (1−Di)Y

(0)
i

♣ Bayesian Data Augmentation

• Imputation step (I-step): impute the missing
data given the observed data and model
parameters.

• Posterior step (P-step): update the posterior
distributions of model parameters given
completed data.
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Estimation Algorithm
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Simulation - DGP

For i = 1, . . . , n and k = 1, . . . , 5:

Zi, X1i, . . . , X5i
iid∼ N (0, 1),

β
(D)
k , β

(1)
k , β

(0)
k

iid∼ U(−1, 1),

Di = 1
{
1.5Zi +Xiβ

(D) + ϵ
(D)
i ≥ 0

}
,

D̄N i =

N∑
j=1,j ̸=i

wijDj ,
∑

j=1,j ̸=i

wij = 1,

Yi =

{
δ(1)D̄N i + 2 +Xiβ

(1) + ϵ
(1)
i

δ(0)D̄N i + 1 +Xiβ
(0) + ϵ

(0)
i

.

where weight matrix W is block diagonal and row-normalized (Liu and Lee, 2010).
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Simulation - Scenarios

1 Sample size n ∈ {100, 500, 1000}

2 The presence of spillovers
• with spillovers: δ(1) = 1.5; δ(0) = 0.5

• no spillovers: δ(1) = δ(0) = 0

3 The joint distribution of the error terms
• normality - for i = 1, . . . , n

ϵi =
[
ϵ
(D)
i , ϵ

(1)
i , ϵ

(0)
i

]′ iid∼ N (0,Σ) ; Σ =

1 0.9 0.7

1 0.6

1


• non-normality - for i = 1, . . . , n

ϵi =
[
ϵ
(D)
i , ϵ

(1)
i , ϵ

(0)
i

]′ iid∼ 1

3
N (0,Σ1) +

2

3
N (0,Σ2)
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Table 1.
Simulation results across

1000 replicates.
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Table 2. Simulation Results for Average Direct Treatment Effects
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Figure 1. Simulation Results for Average Direct Treatment Effects
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Scenario 1’ - No Spillover

Table 3. Simulation Results for Scenario 1’ (No spillover)
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Simulation - Results (cont.)

Table 4. Simulation Results for Scenario 2’ (Non-normality)
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Simulation - Remarks

• Bayesian estimator performs well in terms of bias, RMSE and coverage rate.

• Inclusion of neighborhood treatment term is plausible, regardless of whether spillovers are
present in true DGP.

• Neglecting neighborhood treatment leads to a larger bias and a lower coverage rate, even when
the causal estimand is the direct treatment effect.
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Impact of the Opportunity Zones (OZ) tax incentive

♣ Q: Direct and indirect effects of OZ program on census tracts’ housing unit growth?

• Part of the Tax Cuts and Jobs Act (Dec 2017): offers investment tax incentives to designated census
tracts nationwide to promote economic development in distressed communities.

• Selection process:
 eligibility: poverty rates above 20% or median family incomes below 80% of the area median income.
 nomination: each state governor had 90-120 days to nominate 25% of their eligible tracts.
 approval: on June 14, 2018, U.S. Treasury and IRS certified a list of Qualified Opportunity Zones (QOZs).

• Mixed evidence regarding impact on targeted areas and potential spillovers:
 Corinth and Feldman (2024), Freedman et al. (2023), Chen et al. (2023), and Wheeler (2022), etc.
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OZ status mapping
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Model Specification

• Individual Treatment - being selected into the OZ program

QOZi = 1

{
αPoliticali + β

(D)
0 +

K∑
k=1

β
(D)
k Demographick,i + ϵ

(D)
i > 0

}

• Neighborhood Treatment
QOZi =

∑
j=1,j ̸=i

wijQOZj ;
∑

j=1,j ̸=i

wij = 1

• Revealed Outcome

%∆Housingi =


δ(1)QOZi + β

(1)
0 +

∑K
k=1 β

(1)
k Demographick,i + ϵ

(1)
i , if QOZi = 1

δ(0)QOZi + β
(0)
0 +

∑K
k=1 β

(0)
k Demographick,i + ϵ

(0)
i , if QOZi = 0
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Eligible Census Tracts in California

Table 4. Summary Statistics and Balancing Tests
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Table 4.
Estimation Results
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Indirect Treatment Effects
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Average Direct Treatment Effects
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Marginal Direct Treatment Effects
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By Sub-populations

Table 4. Summary of Direct Treatment Effects

• Eligible but unselected tracts (non-QOZs) continue to face disadvantages: No positive spillover effects
found, and expanding the OZ tax credit to these communities would not be effective.
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Conclusion

1 Many policies we care about have Endogenous Selection into Treatment and Spillovers.
• need to be careful when estimating effects since certain restrictions are necessary to identify causal

estimands.

2 My approach explicitly models endogenous selection into treatment and employs
spatial/network data to capture spillovers in the form of a neighborhood treatment term.

• allows for heterogeneous direct effects across individuals and general interference.
• embraces Bayesian methods to relax parametric assumptions (further steps).

Thank you!
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Empirical Monte Carlo Study

♣ I employ Add Health friendship network data and mimic an evaluation of Social-Emotional
Learning (SEL)-Focused After-School Programs on youth’s prosocial development.

• actual network structure defines the spillover patterns;

• real covariates are considered as observed characteristics;

• treatment and outcome are generated using different data generating processes to analyse
performance of the estimation procedures under different scenarios.
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Add Health friendship network data

• A nationally representative longitudinal study
of adolescents in grades 7–12 in the US
between September 1994 and April 1995.

• The largest community: n = 2534 students.

• Each node represents a student, and network
links are measured using student nomination
(i.e., their best friends, up to 5 females and up
to 5 males).
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Add Health friendship network data
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Add Health friendship network data
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Data Generating Process

• Individual Treatment - enrolling in the SEL-focus after-school program

Di = 1
{
1.5Zi − 0.2Xgender,i −Xgrade,i +Xrace,i + ϵ

(D)
i ≥ 0

}
• Neighbourhood Treatment

D̄i =
∑

j=1,j ̸=i

wijDj ;
∑

j=1,j ̸=i

wij = 1

• Treated and Untreated Potential Outcomes

Y
(1)
i = δ(1)D̄i + 2− 0.5Xgender,i + 0.3Xgrade,i + 0.2Xrace,i + ϵ

(1)
i

Y
(0)
i = δ(0)D̄i + 1 + 0.3Xgender,i − 0.4Xgrade,i + 0.1Xrace,i + ϵ

(0)
i

• Revealed Outcome
Yi = DiY

(1)
i + (1−Di)Y

(0)
i
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Treatment status - what if my friend is treated?
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[2× 2] scenarios
1 The presence of spillovers

• without spillovers: δ(1) = δ(0) = 0

• with spillovers: δ(1) = 1.5; δ(0) = 0.5

2 The joint distribution of the error terms
• a normal distribution - for i = 1, . . . , n

ϵi =
[
ϵ
(D)
i , ϵ

(1)
i , ϵ

(0)
i

]′ ind∼ N (0,Σ) ; Σ =

1 0.9 0.7

1 0.6

1


• a finite mixture of normal distribution - for i = 1, . . . , n

ϵi =
[
ϵ
(D)
i , ϵ

(1)
i , ϵ

(0)
i

]′ ind∼ 1

3
N (0,Σ1) +

2

3
N (0,Σ2)

♣ Simulation results:
• Bayesian estimator performs well in terms of bias, RMSE and coverage rate.
• Inclusion of neighbourhood treatment term is plausible, regardless of whether spillovers are present

in true DGP or not.Duong Trinh (Economics) Self-selection and Spillovers 35 / 35



Spillovers exist: δ(1) = 1.5; δ(0) = 0.5
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Spillovers exist: δ(1) = 1.5; δ(0) = 0.5
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Spillovers exist: δ(1) = 1.5; δ(0) = 0.5
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No Spillovers: δ(1) = δ(0) = 0
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No Spillovers: δ(1) = δ(0) = 0
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No Spillovers: δ(1) = δ(0) = 0
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