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CHAPTER

ONE

INTRODUCTION

Causal inference has long been a fundamental topic in economics, especially when it plays an
essential role as the basis for policy or decision making. The gold standard to understand the
causal effect of a treatment is a randomized controlled experiment in which the treatment is
randomly assigned. In many cases, however, randomized controlled experiments are compli-
cated or impossible to implement due to financial, political, or ethical reasons. This challenge
has led to the adoption of a variety of quasi-experimental approaches based on observational
data to estimate treatment effects. Nevertheless, inferring causal relationships from observa-
tional data remains difficult because treatments are observed rather than assigned randomly,
and the Unconfoundedness assumption is often required. This assumption imposes that the
treatment is as good as randomly assigned once we condition on observables.

A problem empirical researchers face when relying on the conditional-on-observables iden-
tification strategy is to determine which control variables should be included. Even when
one may get some intuitions from economic theories or prior knowledge, the corresponding
function forms of relevant variables are still uncertain. This lack of clear guidance leaves re-
searchers with a vast set of potential control variables, including raw factors available in the
data themselves, as well as many of their possible transformations as regressors. More often
than not, studies rely on ad hoc sensitivity analyses in which a researcher reports results
for several different sets of controls to convey that their substantive result for the treatment
effect is insensitive to changes in the set of control variables [Angrist and Pischke, 2008].

Meanwhile, a growing number of innovative statistical methods (known as machine learn-
ing) are available for constructing prediction models in the presence of high-dimensional data
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CHAPTER 1. INTRODUCTION 2

[Hastie et al., 2009]. Although these regularization-based methods tend to perform well at
prediction, which they are designed for, they may often suffer a poor assessment of uncer-
tainty around the estimates of regression coefficients [Leeb and Pötscher, 2008]. In other
words, they hardly produce valid confidence intervals for parameters of interest.

A novel approach that successfully adopts and modifies machine learning methods to
control confounding variables properly and provide high-quality inference on treatment ef-
fects is the Post-Double-Selection Lasso (PDS Lasso) method, proposed by Belloni et al.
[2014b]. They consider a partially linear model with high-dimensional potential controls.
Rather than using the usual Post-Single-Selection procedures that rely on a single selection
step with Lasso, they use two different variable selection steps with Lasso followed by a final
estimation step with ordinary least squares regression. Their theoretical results demonstrate
the uniformly valid inference over a rich class of data-generating processes as the merit of
this method.

Another approach that alleviates the issues discussed above is using Bayesian techniques
to obtain valid inference from posterior samples. This is exemplified in the work undertaken
by Antonelli et al. [2019], the High-dimensional Confounding Adjustment (HDCA) method.
In a nutshell, the authors introduce a general formulation of the spike-and-slab Lasso prior
to allow the prior probability that the regression coefficient of a given potential control is
included in the slab component to depend on the association between this covariate and the
treatment. Remarkably, results from their well-designed simulation study indicate a com-
parable bias yet a better interval coverage rate achieved by this Bayesian method compared
to Post-Double-Selection Lasso. One explanation for the superiority of HDCA lies in the
way this method could drastically reduce the shrinkage of important confounders, whereas
still shrinking to zero the coefficients of instrumental and noise variables in the structural
equation. Furthermore, this effect seems to be attributed to the spike-and-slab Lasso prior, a
notable member of a broader class of the Bayesian shrinkage priors. In fact, the major goal
of shrinkage priors is to shrink small coefficients to zero while maintaining true large coeffi-
cients, especially in high-dimensional settings. The possible variation in shrinkage amounts
among those priors depends on their specific shapes/designs/creations. In particular, the
sharper the peak is around zero, the stronger shrinkage for small coefficients. Also, the
heavier the tail, the lighter the shrinkage for large coefficients. Naturally, one may think of
extending the idea to borrow information from the treatment equation to guide the amount
of shrinkage in the structural equation to other high-dimensional shrinkage priors beyond
the spike-and-slab Lasso.

Indeed, there are numerous reasons why this extension is potential and worthwhile.
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Firstly, it has been known that each Bayesian shrinkage prior could be presented by a
function similar to a penalty term in Frequentist regularized regression; thus, penalization
could be incorporated naturally within a Bayesian framework through the choice of priors.
As a result, this extension could offer a more flexible way to apply regularization-based meth-
ods to tackle causal inference problems. Secondly, Bayesian regularization-based methods
offer additional advantages such as readily available uncertainty estimates and automatic
estimation of the penalty parameter compared to Frequentist regularization-based methods.
These merits are also observed in the cases of HDCA and PDS Lasso. In addition, for the
same ultimate goal of inference on treatment effects, PDS Lasso allows a moderate variable
selection mistakes1, while HDCA makes use of a more adaptive of variable selection tech-
niques. Therefore, it is attractive to examine if the good quality of the HDCA framework
is robust for various choices of shrinkage priors, and if we could enhance its performance to
be more effective - better variable selection for better causal inference. At this point, the
extension could play a role as a straightforward implementation. Last but not least, little
is known about the finite-sample behaviour of different Bayesian shrinkage priors in a spe-
cialized setting, such as causal inference. Broadly speaking, there is a lack of a large-scale
comparison of Bayesian shrinkage priors, except for the recent surveys of Van Erp et al.
[2019] and Polson and Sokolov [2019]. These early attempts, however, devote mostly to eval-
uating performances in terms of variable selection and prediction. Therefore, the extension
could serve as a missing piece of the whole picture.

Taken together, this thesis aims to investigate the application of Frequentist and Bayesian
regularization-based methods to inference on treatment effects with high-dimensional poten-
tial controls. The contribution is twofold:

Firstly, we generalize the High-dimensional Confounding Adjustment approach devel-
oped by Antonelli et al. [2019] to a Bayesian framework for inference on treatment effects.
Specifically, generic Stochastic Search Variable Selection (SSVS) priors [George and McCul-
loch, 1993] and generic Spike and Slab [Kuo and Mallick, 1998] are adopted. The generic
framework then allows us to incorporate various Bayesian shrinkage priors include Nor-
mal prior, Student-t prior, Laplace prior and Horseshoe prior, hence create eight Bayesian
regularization-based methods for causal inference in total. Combined with Post-Double-
Selection Lasso [Belloni et al., 2014b], regarded as Frequentist regularization-based method,
we evaluate the finite-sample performance of all methods within a dedicated Monte-Carlo
study that covers a large class of scenarios to ensure both overall and in-depth analyses. An
empirical illustration is also taken into consideration. To the best of our knowledge, there is

1which do not affect the asymptotic properties of the estimators



CHAPTER 1. INTRODUCTION 4

no large-scale evaluation like that before, especially in terms of applying different Bayesian
techniques to estimation and inference about treatments effects in high-dimensional settings.
This extension, therefore, enriches current understandings of performances of regularization-
based methods for causal inference as well as properties of Bayesian shrinkage priors in
non-conventional designs, as explained in the previous part.

Secondly, these modern methods discussed in this study could be considered as a data-
driven complement to traditional econometric methods, developed to address causality issues
from observational data in the context of high-dimensional settings. These developments
would help enhance the credibility of empirical economic analysis. Through examining the
effect of media on voting outcomes following Enikolopov et al. [2011], our empirical example
shows how this approach could be applied to support the causal conclusion in linear regression
models.

The general outline of this thesis is as follows: Chapter 2 is a brief literature review that
provides three pivots for our analysis throughout this study. In the first part, we formulate a
causal framework for inference on treatment effects under the Unconfoundedness assumption.
This allows us to specify the puzzle of regression with high-dimensional possible controls,
which motivates a data-driven and systematic variable selection approach. The second part
of this chapter is a short introduction to regularized regression - a potential solution to
cover the gap. A duality between Frequentist and Bayesian approaches is described as well.
Examining a range of strategies from the naive to the state-of-the-art, the third part of
Chapter 2 illustrates how regularization has been adopted by both Frequentist and Bayesian
paradigms when the goal is causal inference. Built upon these foundations, in Chapter 3,
we design a set of Frequentist and Bayesian regularization-based methods for inference on
treatment effects in high-dimensional settings. Next, the performances of these methods are
evaluated within a Monte-Carlo study in section 4 and an empirical illustration in section
5. Finally, Chapter 6 summarizes the main findings of this thesis and discusses several
implications for current and future research.



CHAPTER

TWO

LITERATURE REVIEW

2.1 Inference on Treatment Effects under Unconfoundedness

2.1.1 Problem Statement, Notation and Identifying Assumptions

Throughout the manuscript, we consider an observational study which yields i.i.d sample
Pi = (yi, Ti,Xi) for i = 1, . . . , n; where yi is the outcome, Ti is the scalar treatment variable
(we do not need to impose restriction on Ti as a binary or continuous variable), and Xi

is a p-dimensional row vector of potential control variables for subject i1. We focus on
high-dimensional setting where p is close to or even larger than the number of observations
n.

In a canonical econometric analysis, we are mainly interested in several causal estimands2

relevant to the effect of treatment T on outcome y, i.e. Causal treatment effects. With this
goal in mind, we start utilizing the Neyman-Rubin potential outcome framework. Denote
yi(t) the potential outcome the subject i could receive under the treatment level Ti = t.
Hence,

The (hypothetical) individual treatment effect (ITE) of Ti on yi is defined as

ζi = ∇tyi(t) =


yi(1)− yi(0), if Ti is binary
∂yi(t)
∂t

, if Ti is continuous

1potential to select among, i.e. we exclude all bad controls (post-treatment, etc.) which we are sure
about. For recent discussion, Cinelli et al. [2020] is a good reference.

2the parameters of interest that summarize the causal effect of treatment variable, later denoted by ∆.

5
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where ζi measures the impact of a change in treatment variable Ti while holding other factors
fixed. However, this quantity is never identified since only one potential outcome for each
individual is directly observed. This is widely acknowledged as the fundamental problem of
causal inference.

Hence, we focus our attention on the average treatment effect (ATE), which is defined as

∆ = E [ζi] = E [∇tyi(t)] =


E [yi(1)]− E [yi(0)] , if Ti is binary

E
[
∂yi(t)
∂t

]
, if Ti is continuous

Another causal estimand, the conditional average treatment effects (CATE), is also con-
sidered

E [ζi |X i = x] = E [∇tyi(t) |X i = x]

=


E [yi(1) |X i = x]− E [yi(0) |X i = x] , if Ti is binary

E
[
∂yi(t)
∂t
|X i = x

]
, if Ti is continuous

ATE and CATE are only identified under plausible assumptions under which these quan-
tities can be expressed in terms of observed data. In particular, the following assumptions
are most commonly imposed and must hold for any t and x for the sake of identification:

• Assumption 1. Stable Unit Treatment Value Assumption (SUTVA)

Ti = t implies yobsi = yi(t) ∀t ∈ supp(Ti)

This assumption ensures that for each subject j, the same treatment level cannot lead to
different observed outcome [Little and Rubin, 2000]. We observe the potential outcome
correspond to the realized treatment level. To avoid clutter, denote yobsi simply by yi
from now on.

• Assumption 2. Overlap

0 < P(Ti = t |X i = x) < 1 ∀t ∈ supp(Ti),x ∈ supp(X i)

This assumption states that all subjects has a positive probability of receiving any
treatment level. This is a necessary condition to estimate treatment effects everywhere
in covariate space.

• Assumption 3. Unconfoundedness

yi(t) ⊥ Ti |X i = x
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The assumption stipulates that the treatment is independent of the potential outcome
(as good as randomly assigned), condition on observables X. This is the most widely
cited assumption in empirical studies and it comes in various names with the same
intuition: No unmeasured confounders implies there is no unmeasured confounders
and that the set of measured variables X contains all common causes of treatment
and outcome. Conditional Independence, Selection on Observables, Conditional on
Observables are more popular in Econometrics [Barnow et al., 1981]. That means once
we condition on observables X, the treatment assignment is independent of how each
subject would respond to the treatment (potential outcomes). In other words, the rule
that decides the level subject i is treated is determined completely by their observable
characteristics. Ignorability states that the treatment variable may be ignorable/ taken
as exogenous once we control for enough observed factorsX. More details are discussed
in Angrist and Pischke [2008], Wooldridge [2010], Morgan and Winship [2015] and
Imbens and Rubin [2015]. Despite this jargon, for many purposes, it suffices to assume
conditional mean independence:

E [yi(t) | Ti,X i] = E [yi(t) |X i]

2.1.2 Estimations of Causal Treatment Effects

By definition, there is a clear link between ATE and CATE:

E [ζi] = E{E [ζi |X i = x]}

When three assumptions above are satisfied, CATE can be transformed as follows:

E [ζi |X i = x] = E [∇tyi(t) |X i = x]

= E [∇tyi(t) | Ti = t,X i = x] (due to Unconfoundedness)

= E [∇tyi | Ti = t,X i = x] (due to SUTVA)

Now, we proceed by assuming a linear regression model for E [yi | Ti,X i] (Assumption 4.)

yi | Ti,Xi,γ, σ
2 ∼ Normal

(
µ(Ti,Xi,γ), σ2

)
, ∀i = 1, . . . , n (2.1)

where the conditional expected function (CEF) is

µ(Ti,Xi;γ) = β0 + αTi +X iβ, γ = (β0, α,β
T )T

thus this extra assumption entails CATE is homogeneous treatment effect

E [ζi |X i = x] = ∇tE [yi | Ti = t,X i = x] = ∇tµ(t, x;γ) = α
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hence the ATE is also straightforward: ∆ = E [ζi] = E [ζi |X i = x] = α.

Now, we rewrite (2.1) to a more popular form in econometrics 3:

yi = β0 + αTi +X iβ + εi, εi | Ti,Xi ∼ Normal (0, σ2) ∀i = 1, . . . , n (2.2)

At this point, an natural estimator for the ATE (∆) we may think of is α̂, where α̂ is a
good4 estimator of α, obtained from model (2.2).

• Assumption 5. Approximate sparsity
β is non-zero for only a subset S of the set of potential controls X, where | S |= s < n.
This assumption implies that, the number of potential controls X (p) may exceed the
sample size, but conditional expectation function (CEF) is well-approximated by s < n

elements.

So far, if we can identify exactly S as set of specific controls needed, then the OLS estimator
α̂OLS of model: yi = β0 + αTi + Siβ + εi would be an unbiased and consistent estimator
for the ATE. Intuitively, we can make a causal interpretation of α̂: “the amount Y would
change if T were changed by one unit”. Otherwise, a lack of proper control in S could lead
to Omitted variable bias.

To sum up, given a vast set of potential control variable X, the basic strategy behind
regression analysis to estimate a causal effect is to include a sufficient set of proper control
variables S into the model in addition to the treatment variable T . In other words, the set
of controls S plays a role as regression adjustment/confounding adjustment to enable the
causal interpretation of the estimated regression coefficient α̂. If we cannot control for S
properly, we simply cannot obtain causal effect.

2.1.3 The Puzzle of Regression with High-dimensional Controls

There are some guidelines for deciding a candidate variable should be controlled or not. First,
we should control for confounders, which are pre-treatment variables that determine both
the treatment and the outcome. Exclusion of confounders in the regression model results
in biased estimation of the treatment effect. Second, we should not control for “noise”
covariates since inclusion of them may lead to low precision estimates of the treatment
effect. However, it seems still vague to verify a set of controls S is proper and sufficient.

3An alternative condition to standard normal distributed error, E [εi | Ti,Xi] = 0
4good is used in the sense of desirable properties such as unbiased, consistent, etc.
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Empirical researchers often face two issues in realistic implementation: First, which factors
are important confounders are never known exactly, thus it would be difficult to categorize
initially. Even when one may get some intuitions from economic theories or prior knowledge,
the corresponding function forms of relevant variables are still uncertain. Second, the set
of potential control variables is often quite large relative to the available sample size. This
candidate set could be vast because of the number of baseline factors themselves, or as a
result of incorporating many of their possible transformations (polynomials or interactions)
as regressors.

There are several ways to response to this dilemma. In early days of empiricism, big set
of choices facilitates researcher degrees of freedom5 [Simmons et al., 2011]. As pessimistically
pointed out by Leamer [1983], it is easy for economists to proclaim a seemingly significant
finding by cherry-picking a small subset of the potential controls and proceeding with their
analysis. Under the influence of “a credibility revolution” in modern empirical work in
economics [Angrist and Pischke, 2010], sensitivity analysis has been regarded as a remedy
for reducing such false positives. More often than not, researchers often present in the final
paper estimates of various sets of controls in order to convey that their substantive result
for the treatment effect is insensitive to changes in the set of control variables. Nonetheless,
such procedure of robustness checking is still ad hoc. Moreover, in the context of linear
regression model armed with a tradition estimation approach like Ordinary Least Squares
(OLS), examining the specification with high-dimensional data is impossible in many cases.
The term high-dimensional data is used here in the sense that the number of regressors (p)
being comparable or even larger than the number of observations (n). Particularly, if p is
greater than n, the OLS estimator for the parameter of interest is simply non-existent. Even
when we restrict our attention to full rank setting (n remains slightly larger than p), ill-posed
problems/overfitting problems may occur and make the estimates far less precise.

These problems emerged from common practice continue demanding a more systematic
and data-driven way of searching for a small set of influential confounders among the initial
broad set of covariates, thereby supporting to a more reliable treatment effect estimation.
This consideration suggests that statistical regularization method, which is well-known as
one of the most effective solution for some primary goals (such as prediction and variable
selection) in high-dimensional setting [Hastie et al., 2009], signals it own potential to cover
the gap.

5Researchers may consciously or unconsciously choose controls to generate results they want
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2.2 Regularization and the Duality

By definition, regularization is a statistical technique widely used to solve an ill-posed problem
for the purpose of stability or to guard against overfitting for the purpose of generalization.
These goals can be achieved by introducing additional prior information about the desired
solution to the underlying model. In particular, from a classical viewpoint, this information
is usually in the form of a penalty for some spectral components of the solution. Interestingly,
many regularization techniques correspond to imposing certain prior distributions on model
parameters under the Bayesian framework.

Within the scope of this brief review, we focus on regularized regression methods in a
popular high-dimensional setting. There are several reasons why this approach has enormous
potential to solve the puzzle of regression with high-dimensional controls, which we have
discussed in the section 2.1. Generally speaking, regularization methods exert a shrinkage
effect on regression coefficients, as an optimal trade-off between model complexity (bias)
and out-of-sample performance (variance). Particularly, when the number of predictors p
is larger than the sample size n, these methods are able to select variables out of a large
set of variables that are relevant for predicting the outcome. Furthermore, even when the
number of predictors p is smaller than the sample size n (yet still relatively large), these
techniques are beneficial in terms of avoiding overfitting and achieving model parsimony
compared to traditional variable selection methods. The advantages regarding prediction and
variable selection of regularized regression methods are shown in many previous studies, e.g.,
Wang et al. [2020] provides a large-scale comparison of different frequentist regularization
methods in terms of three related goals - prediction, variable selection and variable ranking
in high-dimensional data; Van Erp et al. [2019] and Polson and Sokolov [2019] provide a
comprehensive overview of Bayesian shrinkage priors and illustrate their various behaviour
in terms of variable selection.

In terms of implementation, a frequentist incorporates a variety of regularizers into a
measure of fit, while a Bayesian combines various hierarchical priors with the likelihood.
The last several years have recorded tremendous interest in the equivalence between two
underlying mechanisms for the same goal of acquiring attractive properties. In parallel with
understanding the duality, we will revisit some well-known regularizers and shrinkage priors
to set the foundation for our further applications.
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2.2.1 Frequentist Regularization

Originally, regularization can be viewed as a constraint on the model space. Consider a
classic linear regression model with normally distributed errors

y = Xβ + ε, ε ∼ N
(
0, σ2

ε I) (2.3)

The corresponding regularized maximum likelihood optimization problem is defined as

minimize
β

‖y −Xβ‖2
2 subject to φ(β) ≤ s (2.4)

of which the solution could be written in the alternative form

β̂ = argmin
β

‖y −Xβ‖2
2 + λφ(β) (2.5)

where:

• y is the vector of observed outcomes,X is a design matrix, β are the model parameters.

• s in (2.4) or λ in (2.5) is a tuning parameter (hyper-parameter) controlling the strength
of the penalty.

• φ(β) is a regularization term (penalty).

In general, a separable penalty is of the form: φ(β) = ∑p
j=1 φ(βj), where φ(βj) is a penalty

function applied for each component βj. In fact, each appropriate choice of the regularization
term is associated with a desirable estimator in (2.5). Mathematically, a regularized solution
can be defined by constraining the topology of a search space to a ball.

Ridge

The Ridge estimator [Hoerl and Kennard, 1970] takes the form in (2.5) with an `2-norm
penalty

λφ(β) = λ
p∑
j=1

φ(βj) = λ
p∑
j=1

β2
j = λ ‖β‖2

2 (2.6)

The solution is given by
β̂ = (XTX + λI)−1XTy (2.7)

As a special case of Tikhonov regularization, Ridge regression aim to address the issue
of numerical instability when XTX is ill-conditioned, which is always a case whenever p is
large. Intuitively, the larger tuning parameter λ is, the stronger shrinkage toward zero put
on the coefficients. However, the `2-norm penalty leads to non-sparse solutions because it is
not singular at the origin.
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Lasso

The Lasso estimator [Tibshirani, 1996] employs an `1-norm penalty in (2.5):

λφ(β) = λ
p∑
j=1

φ(βj) = λ
p∑
j=1
|βj| = λ ‖β‖1

1 (2.8)

While being able to perform shrinkage like Ridge, Lasso performs explicit variable selec-
tion by making some of the coefficients exactly 0 and producing a true sparse solution. This
feature helps distinguish Lasso as a selection-based method from shrinkage-based methods
Ridge represents. The underlying explanation is “`1 − polytope, unlike `2 − polytope, can
touch the contours of the least-squares objective function on one or more of the axes leading
to estimates of zero for the associated regression coefficients.” The tuning parameter λ still
plays a role in controlling for the amount of shrinkage and degree of sparsity.

While this superiority gives rise to the popularity of the Lasso method, there are several
disadvantages of classical Lasso recognized. “Specifically, (i) it cannot select more predictors
than observations, which is problematic when p > n; (ii) when a group of predictors is
correlated, the lasso generally selects only one predictor of that group; (iii) the prediction
error is higher for the lasso compared to the ridge when n > p and the predictors are highly
correlated; (iv) it can lead to over-shrinkage of large coefficients [Polson and Scott, 2010];
and (v) it does not always have the oracle property, which implies it does not always perform
as well in terms of variable selection as if the true underlying model has been given [Fan and
Li, 2001]. The lasso only enjoys the oracle property under specific and stringent conditions
[Fan and Li, 2001, Zou, 2006].”

Elastic Net

The Elastic Net estimator [Zou and Hastie, 2005] is (2.5) using a penalty:

λφ(β) = λ
p∑
j=1

φ(βj) = λ
p∑
j=1

[
α|βj|+ (1− α)β2

j

]
(2.9)

That can be seen as a hybrid between `1 and `2-norm penalties with a mix parameter
α ∈ [0, 1] for the sake of mitigating drawbacks of each component. Clearly, when α = 1 and
α = 0, the Elastic Net estimator corresponds to the Lasso estimator and Ridge estimator,
respectively. While still enjoying some of the benefits of Ridge, Elastic Net can give sparse
solutions. In comparison with Lasso, Elastic Net overcomes the limitation of selecting at
most n variables in the high-dimensional setting (p > n).



CHAPTER 2. LITERATURE REVIEW 13

However, “a disadvantage of the Elastic Net is that the sequential cross-validation pro-
cedure used to determine the tuning parameter results in over-shrinkage of coefficients”.

2.2.2 Bayesian Regularization

From a Bayesian perspective, regularization is instead performed by assigning a prior distri-
bution over the model parameters. Consider a Bayesian linear regression model

y = Xβ + ε, ε ∼ N
(
0, σ2

ε I), β ∼ p(β | λ) (2.10)

The logarithm of the posterior distribution is then given by

− log p(β |X,y) = 1
2σ2

ε

‖y −Xβ‖2
2 + const + log p(β | λ) (2.11)

A regularized maximum a posteriori (MAP) estimate can be found by minimizing the neg-
ative log-posterior:

β̂MAP = argmin
β

‖y −Xβ‖2
2 + φλ(β) (2.12)

where:

• y is the vector of observed outcomes,X is a design matrix, β are the model parameters.

• The regularization term (penalty) φλ(β) ∝ log p(β | λ) is interpreted as the log of the
prior distribution, and is parametrized by the hyper-parameters λ.

Therefore, under an appropriate regularization prior which induces the corresponding penalty,
the resulting maximum a posteriori (MAP) estimate6 in (2.12) is equivalent to the point esti-
mate from a frequentist regularization in (4). That is a key duality between two standpoints.
Some typical examples are an `2 penalty (or Ridge) [Tikhonov, 1963, Hoerl and Kennard,
1970] corresponding to a Gaussian prior under the same observation distribution, and an `1

penalty (or Lasso) corresponding to a double-exponential prior [Tibshirani, 1996]. Figure
2.1 compares the geometry of a unit ball used as a constraint in the frequentist approach
and the corresponding prior distribution used in the Bayesian approach.

Combining a thorough review and well-designed simulations, Van Erp et al. [2019] and
Polson and Sokolov [2019] advocate the following merits of Bayesian regularization methods
in comparison to frequentist counterparts. The first two advantages are often cited, while
the rest are more specific to regularization context:

6can also be interpreted as Bayesian mode of the posterior distribution (assumed to be unimodal)/ a
posterior mode.
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Figure 2.1. Comparison of the geometry of a unit ball induced by Normal, Laplace and
Horseshoe priors [Polson and Sokolov, 2019]

• Automatic uncertainty estimates
Bayesian estimation procedures result in posterior distributions over parameters and
enable analyses of uncertainty in estimates and predictions. In contrast, frequentist
regularized regression procedures can result in estimated standard errors that suffer
from multiple problems, such as unstable or poorly performing variance estimates as
shown by Casella et al. [2010].

• Intuitive interpretations
Bayesian estimates have intuitive interpretations. For instance, a 95% Bayesian credi-
bility interval can simply be interpreted as the interval which contains the true value
with 95% probability.

• Natural penalization through the prior distribution
Penalization can be incorporated naturally within a Bayesian framework through the
prior distribution. Specifically, we can choose the prior distribution in such a way that
it will shrink small effects towards zero while keeping substantial effects large. Thus,
the prior performs similarly to the penalty term in frequentist regularized regression.
Moreover, these Bayesian analogues of frequentist regularization methods have been
shown to perform at least as good as and in some cases better than the classical
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penalization methods (e.g., Casella et al. [2010], Li and Lin [2010]).

• Simultaneous estimation of the penalty parameter
In Bayesian regularization, the penalty parameter can be given its own prior distri-
bution, thereby being estimated with other model parameters in a single step. Addi-
tionally, compared to cross-validated selection in the frequentist approach, averaging
over the penalty parameter in the Bayesian paradigm has been empirically observed
to produce better prediction performance (e.g., Hans [2009]).

• Flexibility in types of penalties
Bayesian regularization offers flexibility in terms of choosing the type of penalties. Fre-
quentist regularization methods rely on optimization techniques to find the minimum
of the regularized regression function and gravitate towards convex penalty functions,
which results in one minimum. By contrast, Bayesian regularized regression utilizes
MCMC sampling, which allows more straightforward implementation of penalties that
are not convex. As a result, it enables a more flexible set of models that closely match
the data generating process.

Nonetheless, these advantages come at the cost of computation and sparsity. The two
main appeals of the frequentist regularization methods, efficient computation and sparse
solution vectors of estimated coefficients, were lost in the migration to a Bayesian approach
[Hahn and Carvalho, 2015].

Recalling with a suitable regularization prior corresponding to the particular penalty, the
resulting posterior mode in (2.12) is equivalent to the point estimate of a classic problem
in (2.5), we are now in the position of reviewing some of such priors which are popular in
the Bayesian literature. Following the overview of Van Erp et al. [2019], we present in turn
different priors in a common framework by setting a standard half-Cauchy priors for the
hyper-parameter (penalty parameter) λ as a robust default choice of prior. The conditional
densities (given the penalty parameter) for the surveyed shrinkage priors are presented in
Table 2.1.
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Table 2.1. Conditional prior densities for the regression coefficients β implied by the
various shrinkage priors and references for each shrinkage prior.

Shrinkage prior Conditional prior density p(βj | λ, . . .) Reference

Ridge p (βj | σ2, λ) =
√

λ
2πσ2 exp

{
−λβ2

j

2σ2

}
Hsiang [1975]

Lasso p (βj | σ2, λ) = λ

2
√
σ2 exp

{
−λ|βj |√

σ2

}
Park and Casella [2008]

Elastic net p (βj | σ2, λ1, λ2) = C exp
{
− 1

2σ2

(
λ1 |βj|+ λ2β

2
j

)}
Li and Lin [2010]

Student-t p (βj | σ2, λ) = σ2

πλ

(
1 +

(
σ2

λβj

)2
)

Meuwissen et al. (2001)

Horseshoe Not analytically tractable Carvalho et al. [2010]

Spike-and-slab p
(
βj | γj, φ2

j

)
= (1− γj)

(
1√

2πφj
2 exp

{
− β2

j

2φ2
j

})
+ γj

(
1

π(1+β2
j )

)
Mitchell and Beauchamp [1988]

Note. C denotes a normalization constant.

(Bayesian) Ridge

The Ridge penalty in (2.6) corresponds to Gaussian prior centered around 0 on the regression
coefficients [Hsiang, 1975], which has a simple structure as follows:

βj | λ, σ2 ∼ Normal
(

0, σ
2

λ

)
, for j = 1, . . . , p

λ ∼ half-Cauchy (0, 1)

σ2 ∼ 1
σ2

(2.13)

The penalty parameter λ determines the amount of shrinkage, with larger values resulting
in smaller prior variance and thus more shrinkage of the coefficients towards zero.

(Bayesian) Lasso

The Bayesian counterpart of the Lasso penalty in (2.8) is Laplace prior, which was first
proposed by Park and Casella [2008]. The Bayesian Lasso can be obtained as a scale mixture
of a Normal density with an Exponential density as below:

βj | τ 2
j , σ

2 ∼ Normal
(
0, σ2τ 2

j

)
τ 2
j | λ2 ∼ Exponential

(
λ2

2

)
, for j = 1, . . . , p

λ ∼ half-Cauchy (0, 1)

σ2 ∼ 1
σ2

(2.14)
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Integrating τ 2
j out leads to Double-exponential7 or Laplace priors on the regression coeffi-

cients, i.e.,

βj | λ, σ ∼ Double-exponential
(

0, σ
λ

)
, for j = 1, . . . , p (2.15)

Although this version of Bayesian Lasso is the most popular form in literature so far; there
are also some alternative formulations suggested by Hans [2009], Mallick and Yi [2014] and
Alhamzawi and Taha Mohammad Ali [2020].

In addition to the overall shrinkage parameter λ, the lasso prior has an additional predictor-
specific shrinkage parameter τj. Therefore, the Lasso prior is more flexible than the Ridge
prior, which only relies on the overall shrinkage parameter in (2.13). Figure 2.1 clearly shows
that the Lasso prior has a sharper peak around zero compared to the ridge prior.

(Bayesian) Elastic Net

The Bayesian dual prior of Elastic Net penalty in (2.9) can be obtained as the following scale
mixture of normal densities [Li and Lin, 2010]:

βj | λ2, τj, σ
2 ∼ Normal

0,
(
λ2

σ2
τj

τj − 1

)−1


τj | λ2, λ1, σ
2 ∼ truncated-Gamma

(
1
2 ,

8λ2σ
2

λ2
1

)
, for j = 1, . . . , p

λ1 ∼ half-Cauchy (0, 1)

λ2 ∼ half-Cauchy (0, 1)

(2.16)

where the truncated Gamma density has support (1,∞). This implies the following condi-
tional prior distributions for the regression coefficients:

p
(
βj | σ2, λ1, λ2

)
= C

(
λ1, λ2, σ

2
)

exp
{
− 1

2σ2

(
λ1 |βj|+ λ2β

2
j

)}
for j = 1, . . . , p

(2.17)

where C (λ1, λ2, σ
2) denotes the normalizing constant. This expression illustrates how the

Elastic Net prior offers a combination of the double-exponential prior, i.e., the Lasso penalty
7Mathematical representation:

∫ ∞
0

1√
2πσ2sj

e

(
−

β2
j

2σ2sj

)
λ2

2 e
− λ

2sj dsj = λ

2
√
σ2
e−λ|βj |/

√
σ2
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λ |βj|, and the normal prior, i.e., the Ridge penalty λβ2
j . Specifically, the two hyper-parameters

λ1 and λ2 determine the relative influence of the Lasso and Ridge penalty, respectively. By
estimating these two hyper-parameters simultaneously, the Bayesian version of Elastic Net
overcomes the over-shrinkage problem of the classical version.

Student-t prior

Student-t prior (also named as Normal-iGamma prior) can be seen as an extension of Gaus-
sian prior for Ridge penalty in (2.13) by making the prior variances predictor-specific, thereby
allowing for more variation, i.e.,

βj | τ 2
j ∼ Normal

(
0, σ2τ 2

j

)
τ 2
j | ν, λ ∼ inv-Gamma

(
ν

2 ,
ν

2λ

)
, for j = 1, . . . , p

λ ∼ half-Cauchy (0, 1)

(2.18)

When integrating τ 2
j out, the following conditional prior distribution for the regression coef-

ficients is obtained:

βj | ν, λ, σ2 ∼ Student
(
ν, 0, σ

2

λ

)
(2.19)

where Student
(
ν, 0, σ2

λ

)
denotes a non-standardized Student’s t distribution centered around

0 with ν degrees of freedom and scale parameter σ2

λ
. A smaller value for ν results in a

distribution with heavier tails, with ν̂ = 1 implying a Cauchy prior for βj. Larger (smaller)
values for λ result in more (less) shrinkage towards m. This prior is considered by Griffin
and Brown [2005]. Compared to the ridge prior in in (2.13), the local Student’s t prior has
heavier tails.

Horseshoe prior

A novel shrinkage prior in the Bayesian literature is the horseshoe prior [Carvalho et al.,
2010]8. This prior is particularly attractive for sparse signal recovery.

βj | τ 2
j ∼ Normal

(
0, τ 2

j

)
τj | λ ∼ half-Cauchy (0, λ), for j = 1, . . . , p

λ | σ ∼ half-Cauchy (0, σ)

(2.20)

8Note that [Carvalho et al., 2010] explicitly include the half-Cauchy prior for λ in their specification,
thereby implying a full Bayes approach. This formulation results in a horseshoe prior that is automatically
scaled by the error standard deviation σ.
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The half-Cauchy prior can be written as a mixture of inverse Gamma densities9 [Makalic
and Schmidt, 2015], so that the horseshoe prior in (2.20) can be equivalently specified as:

βj | τ 2
j ∼ Normal

(
0, τ 2

j

)
τ 2
j | ω ∼ inv-Gamma

(1
2 ,

1
ω

)
ω | λ2 ∼ inv-Gamma

(1
2 ,

1
λ2

)
λ2 | γ ∼ inv-Gamma

(
1
2 ,

1
γ

)

γ | σ2 ∼ inv-Gamma
(1

2 ,
1
σ2

)
(2.21)

An expression for the marginal prior of the regression coefficients βj is not analytically
tractable, but a tight lower bound [Carvalho et al., 2010] can be used instead

− log p (βi | λ) ≥ − log log
(

1 + 2λ2

β2
j

)
(2.22)

The key features for the appealing performance of horseshoe prior are its Cauchy-like tails
and an asymptote at origin (unique advantage), which make horseshoe adaptive to sparsity
and robust to large signals so outperform other shrinkage priors we have discussed.

In the search for intuitive reasons, we consider a common framework of shrinkage rules.
Define κj = 1/(1+τ 2

j ), then κj is a random shrinkage coefficient in [0, 1]. Under a multivariate
normal scale mixture prior (i.e. the general form of all shrinkage priors we are discussing),
the posterior mean can be written as a linear function of the observation:

E [βj | yj] = {1− E [κi | yj]}yj (2.23)

Hence, E [κi | yj] implies the amount of weight that the posterior mean for βj places on 0
once the data have been observed. A shrinkage coefficient κj that is close to zero leads to
virtually no shrinkage, thus describes signals. A shrinkage coefficient κj that is close to one
leads to nearly-total shrinkage, thus describes noises. Intuitively speaking, the behavior of
a priori p(κj) near κj = 1 will control the robustness of signal at tail, while near κj = 0
will control the shrinkage of noise toward 0. Because of difference choice of p(τj), each type
of shrinkage prior has distinct p(κj) reflecting its attempt to separate signal and noise. For
horseshoe prior, the attempt is even implied in its name, which arises from the fact that for
fixed values λ = σ = 1, p(κj) is similar to a horseshoe-shaped Beta (1/2, 1/2). This prior is
symmetric and unbounded at both 0 and 1; thereby, small coefficients (noises) are heavily

9If x2 | z ∼ inv-Gamma (1/2, 1/z) and z ∼ inv-Gamma
(
1/2, 1/α2) then x ∼ C+(0, α)
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shrunken towards zero while substantial coefficients (signals) remain large. None of these
common shrinkage priors above shares this characteristic. For instance, the Laplace prior,
where p(κj) is bounded at both 0 and 1, tends to over-shrink strong signals yet under-shrink
noises. Carvalho et al. [2009, 2010] provide more explanation for other priors.

In fact, unlike local shrinkage priors above, the horseshoe prior is a member of a wider
class of global-local shrinkage priors [Polson and Scott, 2010, Bhadra et al., 2019] because it
enables a clear separation between global and local shrinkage effects. Put another way, this
class of priors adapt to sparsity by a global shrinkage parameter and recover signals by a
local shrinkage parameter.

Spike-and-slab priors

Apart from the Bayesian priors considered so far, which are all continuous mixtures of
normal densities, a spike-and-slab prior is a discrete mixture of a peaked prior around zero
(the spike) and a vague proper/heavy-tailed prior (the slab). The spike-and-slab prior is
first proposed by Mitchell and Beauchamp [1988] and has the popular form as below

p
(
β | γ, σ2

)
=

p∏
j=1

[
(1− γj)δ0(βj) + γjp

(
βj | σ2

)]
(2.24)

where δ0 is a point mass at zero - the concentrated “spike distribution” to model the negligible
(small) effect and p (βj | σ2) is a diffuse “slab distribution” to model the non-negligible (large)
effects, γ = (γ1, γ2, ..., γn)′, γi ∈ {0, 1} is a binary vector that indexes the 2p possible subset
model. Then, based on the data, regression coefficients close to zero will be assigned to the
spike, resulting in shrinkage towards 0, while coefficients that deviate substantially from zero
will be assigned to the slab, resulting in (almost) no shrinkage.

Although the above point-mass spike and slab prior is often regarded as “theoretically
ideal”, or a “gold standard” for sparse Bayesian problems, deriving the corresponding full
posterior over the entire model space can be a computational burden as a result of the
complexity of updating the discrete indicators γ. Alternatively, some variant spike-and-slab
models have been developed to replace the point-mass δ0 by a continuous density that is
heavily concentrated about zero. One of such continuous relaxation was made by George
and McCulloch [1993]10. Specifically, they used a normal density with very small variance
for the spike and a normal density with very large variance for the slab and propose the

10See also George and McCulloch [1997], who describes and compares various hierarchical mixture prior
formulations of variable selection uncertainty in normal linear regression models.
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following prior for β

p
(
β | γ, σ2

)
=

p∏
j=1

[
(1− γj) Normal

(
0, σ2τ 2

0

)
+ γj Normal

(
0, σ2τ 2

1

)]
(2.25)

where 0 < τ 2
0 � τ 2

1 . Ishwaran and Rao [2005] and Narisetty and He [2014] further ex-
tended the model by rescaling the variances τ 2

0 and τ 2
1 with sample size n in order to better

control the amount of shrinkage for each individual coefficient (particularly suitable for re-
gression settings with very large numbers of covariates). From the regularization viewpoint,
prior (2.25) is associated with the spike-and-slab penalty using a mixture of two normal
distribution

φ(βj) = − log
 γj√

2πσ2τ 2
1

 e− β2
j

σ2τ2
1 +

 1− γj√
2πσ2τ 2

0

 e− β2
j

σ2τ2
0

 (2.26)

In terms of variable selection, it could be useful to take into account two auxiliary vari-
ables, the indicator γj (above) and the latent effect size αj. One reasonable interpretation
for (2.25) is that the regression coefficient and the effect size are the same, βj ≡ αj, thus
obviously share the same distribution. Since the indicator affect the prior distribution of αj
(i.e. βj), so that the prior P(αj | γj = 0) would influence posterior. Given some difficulties
when tuning hyper-parameters, George and McCulloch [1993] developed a Stochastic Search
Variable Selection (SSVS) procedure based on posterior sampling with MCMC and thresh-
olding the posterior inclusion probabilities, P (γj = 1 | y) ,∀j = 1, p. Thereby, the prior in
(2.25) is also known as a SSVS prior.

Another way to perform variable selection is by re-parametrizing βj ≡ γjαj, where γ =
(γ1, . . . , γj) and α = (α1, . . . , αj) are two independent random variables satisfying:

αj | σ2 ∼ Normal (0, σ2)

γj | θ ∼ Bernoulli (θ)
(2.27)

Unlike SSVS prior, this probabilistic structure implies that the prior P(αj | γj = 0) has no
impact on posterior; therefore, no tuning is required while coefficients can be made exactly
zero at positive probability. This is a variable selection approach proposed by Kuo and
Mallick [1998]. The recent paper by Polson and Sun [2019] draws an interesting connection
between the prior in (2.27) and `0-regularization.

2.3 Regularization when the Goal is Causal Inference

In section 2.1, we anticipate that regularization could come in to play a role in treatment
effect estimation using observational data where the number of control variables is relatively
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large compared to the available sample size. Indeed, there are a host of regularization meth-
ods from both Frequentist and Bayesian literature, each of which has its own competitive
advantages in specific contexts, as illustrated in section 2.2. Nevertheless, we should keep in
mind that these tools are originally designed for the purpose of prediction (and sometimes
variable selection), while our ultimate goal here is causal inference. Several authors have
pointed out that Frequentist and Bayesian regularization procedures that focus on predicting
y perform poorly when the inferential goal is estimation of the treatment effect of T on y

[Candes and Tao, 2007, Belloni et al., 2014b, 2017, Wang et al., 2012, Hahn et al., 2020].
Even though a well-performed selection of control variables is our main focus and could be
partly tackled by a proper regularization approach, this should be considered as a means to
an end rather than an end itself. This rationale leads us to another essential question: What
is an appropriate procedure for valid inference of treatment effect in parallel with seeking
for necessary control variables?

Interestingly, this conundrum has been again investigated by both Frequentists and
Bayesians. They both admonish naive regularization approaches while looking for novel so-
lutions from their viewpoint. Several prominent strategies are summarized below, although
we would start from some naive methods as benchmarks.

2.3.1 Frequentist Approach

We turn back to the starting point - treatment effect estimation problem in an observa-
tional study, focus on a linear regression model where the treatment variable Ti is taken as
exogenous after conditioning on control variables

yi = αTi︸︷︷︸
aim

+ X iβ︸ ︷︷ ︸
nuisance

+ εi, ∀i = 1, . . . , n (2.28)

with components are defined in section 2.1.

Naive Procedures

The first naive approach would be to apply Lasso to the equation (2.28) while excluding
α from the `1 penalty to impose that Ti always remains in the model, and then interpret
that the estimate of α directly obtained from this model reflects treatment effect. Even if
the final parsimonious model contains exactly the right control variables, this is a mistake
since Lasso estimators lack valid confidence intervals.
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The second naive approach is Post-Single-Selection Lasso, a common practice criticized
by Belloni et al. [2014a], which could be implemented in two steps:

• Step 1: Use Lasso to estimate equation (2.28) while excluding α from the `1 penalty
(the same as the first naive approach).

• Step 2: Refit the model by least squares after selection (i.e., regress yi on Ti and only
those covariates selected by Lasso as controls), use standard confidence interval and
make inference on treatment effect.

The idea of the Post-Single-Selection procedure for inference relies on perfect model selection.
Unfortunately, this condition is almost unobtainable, so that the procedure can fail miserably.
In fact, Lasso targets prediction, not learning about specific model parameters. Thus, any
control variable that is highly correlated with Ti but weakly with yi tends to drop out of
the selection because adding such a control variable does not increase predictive power for yi
so much. As a consequence, this approach fails to describe the relationship between Ti and
Xi, which is a key to understand the omitted variable bias as well as confounding selection.
Moreover, the structural model (2.28) is not representing a prediction rule for yi given Ti

and xi. Hence, it is not adequate to apply regularization methods such as Lasso directly.

Belloni et al. [2014b], therefore, propose to work with the following system of two reduced-
form equations:

Treatment Eq.: Ti = Xiβt + νi, (2.29)

Outcome Eq.: yi = Xiβy + ηi (2.30)

where βy = αβt + β and ηi = ανi + εi (β and εi are used in (2.28)).

Hence, the nuisance component in structural model (2.28) is modelled as a prediction prob-
lem. Since both equations above represent predictive relationships, one can apply regular-
ization methods directly.

These authors also carefully advise against the third naive procedure that uses only one of
two reduced form equations for selection because of the similar omitted-variable-bias reason
as shown in Post-Single-Selection above. For instance, if we only consider the regression of
Ti on the controls, we might miss the controls with a strong predictive power for yi, but only
a moderately sized effect on Ti.
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Post-Double-Selection Lasso - Belloni et al. [2014b]

Post-Double-Selection Lasso recommended by Belloni et al. [2014b] includes three following
steps:

• Step 1: Use Lasso to estimate Treatment equation (2.29), i.e., we aim to select a set
of control variables that are useful for predicting the treatment Ti. Denote the set of
Lasso-selected controls by S1.

• Step 2: Use Lasso to estimate Outcome equation (2.30), i.e., we aim to select a set
of control variables that are useful for predicting the outcome yi. Denote the set of
Lasso-selected controls by S2.

• Step 3: Estimate structural model (2.28) by least squares using the union of selected
controls in two above steps, i.e. Si = S1 ∪ S2. Finally, we can do inference on the
treatment effect α of interest.

In a nutshell, the Post Double Selection (PDS) procedure involves selection among the
controls that predict either Ti and yi to create robustness. Compared to the Post-Single-
Selection procedure, PDS allows moderate selection mistakes and helps guard against “non-
negligible” omitted variable bias caused by the omission of some important controls. In
essence, this procedure is a model selection version of the Frisch-Waugh-Lovell partialling-
out procedure for estimating linear regression with all selected controls from both yi and Ti
[Chernozhukov, 2015].

Once we get the intuition behind the PDS procedure, we may question the role of Lasso
as a selection device in this approach11. Although all strategies from the naive to the state-
of-the-art we have discussed here are related to Lasso, it is worth noting that other selection-
based regularization methods might also share the same story. Belloni et al. [2014b] actually
extend their Post-Double-Selection procedure to allow for a generic selection method in
Frequentist literature (apart from their feasible Lasso, i.e. iterated/square-root Lasso) with
one extra assumption 12. They suggest some of the alternative satisfied methods include:
thresholded Lasso [Belloni and Chernozhukov, 2011], Bridge estimator [Huang et al., 2008],
Dantzig selector [Candes and Tao, 2007], feasible Dantzig selector [Gautier and Tsybakov,

11In fact, Belloni et al. [2014b] (page 20) note that: “Lasso methods generally will not recover support(β0)
perfectly... We do not require this condition to hold in our results. All that we need is that the selected
model can approximate the regression function well...”

12HLMS - with high probability the selected models are sparse and generate a good approximation for the
functions g and m corresponding to treatment equation and outcome equation.
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2013] and SCAD penalized least squares [Fan and Li, 2001], just to name a few. The key lies
on Immunization property of PDS, which states that (possible) moderate selection mistakes
of the selection method do not affect the asymptotic distribution of the estimator of the
low-dimensional parameter of interest [Ahrens et al., 2020].

Another vital question is how to choose the tuning parameters λ, which can influence
the set of selected variables after each selection. In the literature, there are two following
popular approaches for selecting the penalty level:

• Theory-driven (“rigorous”) approach (Iterated Lasso13): originally used by Belloni et al.
[2014a] and series of their related papers. This approach is supported by theoretically
justified and feasible penalty levels and loadings. The penalization is chosen to domi-
nate the noise of the data-generating process (represented by the score vector), which
allows the derivation of theoretical results14 with regard to consistent prediction and
parameter estimation. Rigorous penalization is of special interest because it provides
the basis for methods to facilitate causal inference.

• Data-driven approach (Cross-Validated Lasso): the most popularly used in literature.
While this approach is a powerful method for predictive purposes, it is often said to lack
theoretical justification. The aim of cross-validation (CV) is to assess the performance
of a model on unseen data directly. In the context of regularized regression, CV can
be used to select the tuning parameters that yield the best performance; for example,
the best out-of-sample mean squared prediction error. Compared to the theory-driven
approach, CV Lasso can be computationally expensive and tend to yield more predic-
tors (as a result of smaller penalties) than in the true model and when theory-driven
regularization is used.

2.3.2 Bayesian Approach

For clarification before we proceed, the Bayesian approach in this section involves both the
use of Bayesian regularization priors as well as the Bayesian inference procedure for treatment

13The term used by Belloni et al. [2014b]. More discussion can be found in Ahrens et al. [2020].
14The theory of the ‘rigorous’ LASSO has two main ingredients: Restricted eigenvalue condition (REC):

REC is much weaker compared to the requirement of OLS - full rank condition, which is too strong in the
high-dimensional context. Penalization level: We need λ to be large enough to ‘control’ the noise in the
data. At the same time, we want the penalty to be as small as possible (due to shrinkage bias). This allows
deriving theoretical results for the LASSO: consistent prediction and parameter estimation. The theory of
Belloni et al. [2012] allows for non-Gaussian and heteroskedastic errors and has been extended to panel data
[Belloni et al., 2016]
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effect estimation.

Similar to pitfalls of the first naive approach with classic Lasso from the Frequentist stand-
point, naive regularization which apply a shrinkage prior over βy using only the structural
model (2.28) and directly make inference on the treatment effect from an estimate of α can be
problematic. As proved by Hahn et al. [2018], this approach performs poorly in coverage and
produces severely biased results. They explain it as a consequence of “regularization-induced
confounding”, the phenomenon of regularization priors to adversely bias treatment effect es-
timates by over-shrinking control variable regression coefficients. They also emphasize this
is an independent issue arising even when the unconfoundedness assumption is satisfied.

Furthermore, following the caveats of the Post-Single-Selection procedure in the Fre-
quentist approach, a good procedure necessitates exploiting information from the treatment
equation (2.29) to avoid omitted variable bias caused by ignoring controls that have a strong
predictive power for Ti, but only a moderate effect on yi. Based on this principle, most of
the Bayesian approaches to confounding adjustment for causal inference rely on the speci-
fication of the treatment equation (2.29) and the structural-form equation (2.28), or of two
reduced-form equations (2.29) and (2.30). For example, Wang et al. [2012] reparameterize
the likelihood into a hierarchical model given by:

Treatment Eq.: (Ti |X i) = X iβt + νi, νi ∼ Normal
(
0, σ2

ν

)
Structural Eq.: (yi | Ti,X i) = αTi +X iβ + εi, εi ∼ Normal

(
0, σ2

ε

)
.

(2.31)

Their main idea is Bayesian adjustment for confounding (BAC), a variant of Bayesian model
averaging to estimate the effect of T on y across various models to account for uncertainty
in the set of confounders. The formulation (2.31) enables them to specify informative priors
that favour the inclusion of covariates in the structural model if they appear in the treatment
model. This approach sets a foundation for some extended works on confounders selection for
heterogeneous treatment effect estimation [Talbot et al., 2015, Wang et al., 2015, Antonelli
et al., 2017]. However, BAC requires calculating the Bayesian Information Criterion at each
posterior draw, which cannot be identified when the number of potential controls surpasses
the available sample size. Therefore, these methods are inapplicable in high-dimensional
settings. Motivated by the idea of incorporating information from treatment equation into
regularized regression on structural model, Antonelli et al. [2019] impose general spike-and-
slab lasso priors over the coefficients of all potential control variables on (yi | Ti,X i) but
reduce shrinkage for Lasso-selected variables in (Ti | X i) (which are potentially important
confounders). The appealing property of this approach lies in its good performance in high-
dimensional confounding adjustment.
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As an alternative approach to Wang et al. [2012], Hahn et al. [2018] use two reduced-form
equations by applying the transformation βy = β + αβt to (2.31), thus obtaining:

Treatment Eq.: (Ti |X i) = X iβt + νi, νi ∼ Normal
(
0, σ2

ν

)
Outcome Eq.: (yi | Ti,X i) = X iβy + α(Ti −X iβt) + εi, εi ∼ Normal

(
0, σ2

ε

)
.

(2.32)

and then specify independent shrinkage priors for βt and βy simultaneously. This procedure
aims to rectify “regularization-induced confounding,” i.e., the bias in estimating α resulting
from the naive regularization mentioned above. In comparison with Antonelli et al. [2019]’s,
this approach has a computational advantage when using continuous shrinkage priors such
as horseshoe rather than spike-and-slab type priors, thereby entailing the ease of posterior
sampling. However, Woody et al. [2020] argue that even with careful regularization as a
major target of Hahn et al. [2018], the inclusion of a large number of controls could still
drown out any signal in the treatment effect given an insufficient number of observations, as
shown in their empirical illustrations.

In addition to develop a new Bayesian approach for inference on treatment effects with
high-dimensional controls, Antonelli et al. [2019] also provide a simulation study that takes
account of many advanced methods from Frequentist approach such as Belloni et al. [2014b],
Farrell [2015] and Athey et al. [2016]. Their simulation results are quite appealing: The au-
thors’ Bayesian framework for estimating causal effects of binary and continuous treatments
in high-dimensional settings produces posterior credible intervals with higher finite-sample
coverage compared to Frequentist counterparts. One possible explanation could be that
Frequentist measures of uncertainty rely on asymptotic properties, while the Bayesian ap-
proach captures the uncertainty in the data (and provides statistically valid inference). The
following is a brief description of Antonelli et al. [2019]’s idea, which is a benchmark for our
general approach in the next chapter.

High-dimensional Confounding Adjustment - Antonelli et al. [2019]

Antonelli et al. [2019] consider the idea to borrow information from the treatment model to
guide the amount of shrinkage in the outcome model. They then propose a spike-and-slab
Lasso prior approach to the problem that the naive approach of just ignoring treatment
equation and using regularization methods only on the structural equation has: the coeffi-
cient on a control variable that is highly correlated with T i but weakly with yi tends to be
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shrunk to zero. For j = 1, p, their proposed hierarchical formulation is:

yi | T i,X i, β0, α,β, σ
2 ∼ Normal

(
β0 + αT i +X iβ, σ

2
)
∀i = 1, . . . , n

β0, α ∼ Normal (0, K)

βj | γj, σ2 ∼ γjψ1
(
βj;λ1, σ

2
)

+ (1− γj)ψ0
(
βj;λ0, σ

2
)

γj | θ, ωj ∼ Bernoulli (θωj)

θ | a, b ∼ Beta (a, b)

σ2 | c, d ∼ Inv-Gamma (c, d)

(2.33)

where ψ0 (βj;λ0, σ
2) = λ0

2σe
−λ0|βj |/σ and ψ1 (βj;λ1, σ

2) = λ1
2σe
−λ1|βj |/σ. Each of them is a

Laplace distribution (corresponding to Lasso penalty - see (2.15)). The hyper-parameter
λ1 is fixed to be a small value, e.g. 0.1, so that the prior variance in the slab component
ψ1(.) is high enough to be uninformative. Meanwhile, the hyper-parameter λ0 for the spike
component ψ0(.) is chosen via Empirical Bayes.

A new feature that they introduce is the weights ωj which are tuning parameters that
they use to prioritize variables to have γj = 1 if they are correlated with the treatment.
Specifically, they firstly fit the standard Lasso in the treatment equation for predicting T
given X. For xj with non-zero coefficient from the Lasso estimation, they then set ωj = δ

for some δ ∈ (0, 1). For other variables, ωj = 1. On the one hand, a smaller value of δ
leads to higher inclusion probability, hence, provides more protection against the omitted
variable bias. On the other hand, one needs to ensure a small enough inclusion probability
for an unimportant variable in the outcome model (that is xj with βj = 0 ). The conditional
probability that xj belongs to the slab component is

p∗ωj

(
βj | θ, λ0, σ

2
)

= P
(
γj | βj, λ0, θ, σ

2, ωj
)

= ψ1 (βj;λ1, σ
2) θωj

ψ1 (βj;λ1, σ2) θωj + ψ0 (βj;λ0, σ2) (1− θωj)
(2.34)

They first run a Gibbs sampler with ωj = 1 for all j and then plug in posterior means for the
unknown coefficients in the above inclusion probability. The authors then choose δ ∈ (0, 1)
as the smallest value of ωj such that p∗ωj (0 | θ, λ0, σ

2) is less than 0.1.
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METHODOLOGY

3.1 Overview

In this study, we use both Frequentist and Bayesian regularization-based methods for infer-
ence on treatment effects from an observational study using a linear regression model under
the Unconfoundedness assumption. With respect to Frequentist approach, we employ Post-
Double-Selection Lasso (PDSLasso, hereafter) proposed by Belloni et al. [2014b]. About
Bayesian approach, we generalize the High-dimensional Confounding Adjustment (HDCA,
hereafter) framework of Antonelli et al. [2019] by utilizing various Bayesian shrinkage priors.

Since both PDSLasso and HDCA involve Lasso for variable selection to a certain extent,
implementation details should be taken into consideration. Particularly, Belloni et al. [2014b]
use Lasso in both selection steps corresponding to the treatment equation and the outcome
equation. They specifically develop Iterated Lasso, which is supported by a theory-driven
penalty level. Meanwhile, Antonelli et al. [2019] use Lasso in the first step corresponding to
the treatment equation to decide an active covariate set. They apply CV Lasso as a common
approach but does not explicitly provide theoretical background for their choice. Regarding
empirical evidence in causal inference, Angrist and Frandsen [2019] show that CV Lasso
retains more controls, but yields similar estimates for treatment effects; while Wuthrich and
Zhu [2019] find a poorer performance of CV Lasso when applying to PDSLasso. Thus, it is
tempting to employ both versions to PDSLasso and HDCA for a comparison purpose.

Moving on now to consider only Bayesian approach, we focus on the second step (Bayesian
part) of HDCA. Antonelli et al. [2019] originally use the spike-and-slab Lasso prior for the slope

29
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parameters of the treatment variable while introducing the information from the previous
step about the active set through their new feature ωj. Generalizing their idea, we adopt
generic Stochastic Search Variable Selection (SSVS) priors [George and McCulloch, 1993] and
generic Spike and Slab [Kuo and Mallick, 1998]. This framework allows us to incorporate
various Bayesian shrinkage priors, reviewed in section 2.2. Detailed algorithms are described
below. To sum up, we design eight Bayesian methods in total (collectively referred as HDCA

methods hereafter), which are associated with eight following priors: SSVS with Normal
prior (SSVSNormal), SSVS with Student-t prior (SSVSStudent), SSVS with Laplace pri-
ors (SSVSLasso1, SSVSLasso2, SSVSLasso3), SSVS with Horseshoe prior (SSVSHorseshoe),
Spike and Slab with Normal prior (SnSNormal) and Spike and Slab with Laplace prior
(SnSLasso).

3.2 Generic Stochastic Search Variable Selection (SSVS) priors
- George and McCulloch [1993]

For j = 1, p, this hierarchical model can be summarized as:

yi | T i,X i, β0, α,β, σ
2 ∼ Normal

(
β0 + αT i +X iβ, σ

2
)
∀i = 1, . . . , n (3.1)

β0, α | σ2 ∼ Normal
(
0, σ2K

)
(3.2)

βj | γj, σ2, τ 2
0j, τ

2
1j ∼ γj Normal

(
0, σ2τ 2

1j

)
+ (1− γj) Normal

(
0, σ2τ 2

0j

)
(3.3)

τ 2
0j, τ

2
1j ∼ π

(
τ 2

0j, τ
2
1j

)
∀j = 1, . . . , p (3.4)

σ2 | c, d ∼ Inv-Gamma (c, d) (3.5)

γj | θ, ωj ∼ Bernoulli (θωj) (3.6)

θ | a, b ∼ Beta (a, b) (3.7)

where π
(
τ 2

0j, τ
2
1j

)
depends on the specified prior.

Follow Antonelli et al. [2019], we fix a = 1 and b = 0.1p.

Next, we will set ωj = δ ∈ (0, 1) if Xj belongs to the active set (in Stage 1 above) and
ωj = 1 otherwise. The probability that Xj belongs to the slab component given θ, τ 2

0j, τ
2
1j is:

p∗ωj

(
βj | θ, τ 2

0j, τ
2
1j, σ

2
)

=
N
(
βj; 0, σ2τ 2

1j

)
θωj

N
(
βj; 0, σ2τ 2

1j

)
θωj +N

(
βj; 0, σ2τ 2

0j

)
(1− θωj)

(3.8)

We first run the Gibbs sampler with ωj = 1 for all j = 1, . . . , p. Then, the value of δ ∈ (0, 1)1

1δj could be allowed to vary for each covariate j
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is chosen as the smallest value of ωj such that p∗ωj
(
0 | θ, τ 2

0j, τ
2
1j, σ

2
)
is below 10%, where for

the unknown parameter values we use posterior means based on the initial Gibbs sampling.
A Gibbs sampler is summarized below:

1. Sample β∗ =
(
1, α, {βj}j=1,p

)
from the full conditional:

β∗ | • ∼ Normal
(
A−1X∗

′
y∗, A−1

)
(3.9)

whereA = X∗
′
X∗+D−1 withD is a diagonal matrix with diagonal

(
K,K,

{
γjτ

2
1j + (1− γj) τ 2

0j

}
j=1;p

)
2. Sample σ2 from the full conditional:

σ2 | • ∼ Inv-Gamma
(
c+ n

2 + p

2 , d+ 1
2 ‖y − β0 − αT −Xβ‖+ 1

2β
∗′D−1β∗

)
(3.10)

3. Sample γj from Bernoulli distribution with the mean parameter:

N
(
βj; 0, σ2τ 2

1j

)
θωj

N
(
βj; 0, σ2τ 2

1j

)
θωj +N

(
βj; 0, σ2τ 2

0j

)
(1− θωj)

(3.11)

4. Sample θ based on a Metropolis-Hastings algorithm:

p(θ | •) ∝ θa+
∑p

j=1 ωjγj(1− θ)b
p∏
j=1

(1− θωj)(1−γj) (3.12)

5. Update τ 2
0j, τ

2
1j

Denote Q the diagonal matrix with diagonal elements
{

(1− γj) τ 2
0j + γjτ

2
1j

}p
j=1

, (3.3) can be
concisely written as

β | σ2,Q ∼ Np

(
0, σ2Q

)
(3.13)

Also note that

βj | τ 2
0j, σ

2, γj = 0 ∼ Normal
(
0, σ2τ 2

0j

)
βj | τ 2

1j, σ
2, γj = 1 ∼ Normal

(
0, σ2τ 2

1j

)
thus by assigning appropriate priors (specific values/ hierarchical priors) π

(
τ 2

0j, τ
2
1j

)
for τ 2

0j

and τ 2
1j corresponding to spike and slab components, we could obtain particular regularizers

with desirable properties.

QUESTION: Should we decide separable or non-separable priors for τ 2
0j and τ 2

1j? Which
parameter should be fixed - very small τ 2

0j, very large τ 2
1j, their ratio or their hyper-parameters

(e.g.)? Could we mix two different distribution for spike and slab components? Does advice
from Chipman et al. [2001] matter, i.e. control τ 2

1j/τ
2
0j ≤ 10000 regarding thresholds for

selection?
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3.2.1 SSVS with Normal prior

We consider Normal priors proposed by Narisetty and He [2014] on the spike and slab
components. Specifically, the authors fix the value of the prior variance parameters as:

τ 2
0 = σ̂2

10n

τ 2
1 = σ̂2 max

(
p2.1

100n, log(n)
)

where σ̂2 is the sample variance of yi. The prior inclusion probability θ is chosen so that
Pr
(∑p

j=1 γj > K
)

= 0.1 for K = max(10, log(n)). The values of τ 2
0 and τ 2

1 are constant
across j, so Q is a diagonal matrix with diagonal elements {(1− γj) τ 2

0 + γjτ
2
1 }

p

j=1.

3.2.2 SSVS with Student-t prior

We assume Student-t priors introduced by Armagan and Zaretzki [2010] on the spike and
slab components, where

τ 2
0j = 0.001× τ 2

1j

τ 2
1j ∼ Inv−Gamma(η, µ)

The conditional posterior of the hyperparameter is:

τ 2
1j | • ∼ Inv−Gamma

(
η + 1/2, β2

j /2 + µ
)

Note: Armagan and Zaretzki [2010] suggest that the inverse scale parameter µ should be fix
to be very small, while their experiments recommend values for the shape parameter (larger
value encourages further shrinkage) η ∈ {3, 4, 5}. We fix µ = 0.01, η = 1.

3.2.3 SSVS with Laplace prior

We consider Laplace prior proposed by Park and Casella [2008]) in three different ways:

• SSVS Lasso 1: Apply Laplace priors on both spike and slab components interdepen-
dently with a fixed ratio

τ 2
0j = 0.001× τ 2

1j

τ 2
1j ∼

λ2
1

2 e
−λ2

1τ
2
1j/2dτ 2

1j

λ2
1 ∼

(
λ2

1

)r−1
e−δλ

2
1dλ2

1
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The conditional posteriors of the hyperparameters are of the form

1
τ 2

1j
| • ∼ Gaussian

(√
λ2

1σ
2/β2

j , λ
2
1

)

λ2
1 | • ∼ Gamma

 p∑
j=1

γj + r,
p∑
j=1

τ 2
1jγj/2 + δ


• SSVS Lasso 2: Apply Laplace priors on only slab component, fix small τ 2

0j to obtain
normal/point-mass at 0

τ 2
0j = 0.001

τ 2
1j ∼

λ2
1

2 e
−λ2

1τ
2
1j/2dτ 2

1j

λ2
1 ∼

(
λ2

1

)r−1
e−δλ

2
1dλ2

1

The conditional posteriors of the hyperparameters are of the form

1
τ 2

1j
| • ∼ Gaussian

(√
λ2

1σ
2/β2

j , λ
2
1

)

λ2
1 | • ∼ Gamma

 p∑
j=1

γj + r,
p∑
j=1

τ 2
1jγj/2 + δ


• SSVS Lasso 3: Apply Laplace priors on spike and slab components separately (similar

to Antonelli et al. [2019])

τ 2
0j ∼

λ2
0

2 e
−λ2

0τ
2
0j/2dτ 2

0j

λ2
0 ∼

(
λ2

0

)r−1
e−δλ

2
0dλ2

0

τ 2
1j ∼

λ2
1

2 e
−λ2

1τ
2
1j/2dτ 2

1j

λ2
1 = 0.1

The conditional posteriors of the hyperparameters are of the form

1
τ 2

1j
| • ∼ Gaussian

(√
λ2

1σ
2/β2

j , λ
2
1

)

λ2
1 | • ∼ Gamma

 p∑
j=1

γj + r,
p∑
j=1

τ 2
1jγj/2 + δ


Note: In all cases we fix r = 1 and δ = 3.
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3.2.4 SSVS with Horseshoe prior

We assume Horseshoe prior according to Makalic and Schmidt [2015]) on the slab component,
fix small τ 2

0j to obtain normal/point-mass at 0

τ 2
0j = 0.001 (3.14)

τ 2
1j = κ2λ2

j (3.15)

λ2
j | νj ∼ Inv−Gamma (1/2, 1/νj) (3.16)

κ2 | ξ ∼ Inv−Gamma(1/2, 1/ξ) (3.17)

ν1, . . . , νp, ξ ∼ Inv−Gamma(1/2, 1) (3.18)

The conditional posteriors of the hyper-parameters are:

λ2
j | • ∼ In v −Gamma

(
1, 1/vj + β2

j /
(
2κ2σ2

))
(3.19)

κ2 | • ∼ Inv−Gamma
 p∑
j=1

γj/2 + 1/2, 1/ξ +
p∑
j=1

β2
j /
(
2σ2λ2

j

) (3.20)

νj | • ∼ Inv−Gamma
(
1, 1 + 1/λ2

j

)
(3.21)

ξ | • ∼ Inv−Gamma
(
1, 1 + 1/κ2

)
(3.22)

Note: We fix κ = ξ = νj = 1

3.3 Generic Spike and Slab - Kuo and Mallick [1998]

We reparametrize the regression coefficients β by using two independent random vectors
γ = (γ1, . . . , γo) and b = (b1, . . . , bp) such that βj = γjbj. Here, γj is an indicator that only
takes value 0 or 1. For j = 1, p, this hierarchical model can be summarized as:

yi | T i,X i, β0, α, b, σ
2 ∼ Normal

(
β0 + αT i +X ib, σ

2
)
∀i = 1, . . . , n (3.23)

β0, α | σ2 ∼ Normal
(
0, σ2K

)
(3.24)

bj | σ2, τ 2
j
iid∼ γj Normal

(
0, σ2τ 2

j

)
(3.25)

τ 2
j ∼ π

(
τ 2
j

)
∀j = 1, . . . , p (3.26)

σ2 | c, d ∼ Inv-Gamma (c, d) (3.27)

γj | θ, ωj
iid∼ Bernoulli (θωj) (3.28)

θ | a, b ∼ Beta (a, b) (3.29)

where π(τ 2
j ) depends on the specified prior.
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Next, we will set ωj = δ ∈ (0, 1) if Xj belongs to the active set (in Stage 1 above) and
ωj = 1 otherwise. The probability that Xj belongs to the slab component given θ, τ 2

j is:

p∗ωj

(
βj | θ, τ 2

j , σ
2
)

= l1j
l1j + l0j

(3.30)

where l1j = f(y | γ(j), γj = 1, b, σ2)θωj and l0j = f(y | γ(j), γj = 0, b, σ2)(1− θωj).

We first run the Gibbs sampler with ωj = 1 for all j = 1, . . . , p. Then, the value of δ ∈ (0, 1)
is chosen as the smallest value of ωj such that p∗ωj

(
0 | θ, τ 2

j , σ
2
)
is below 10%, where for the

unknown parameter values we use posterior means based on the initial Gibbs sampling. A
Gibbs sampler is summarized below:

1. Sample b∗ =
(
1, α, {bj}j=1,p

)
from the full conditional:

b∗ | • ∼ Normal
(
A−1X∗

′
y∗, A−1

)
(3.31)

where A = X∗
′
X∗+D−1 with D is a diagonal matrix with diagonal

(
K,K,

{
τ 2
j

}
j=1;p

)
and X∗ =

(
1,T , {γjXj}j=1;p

)
.

2. Sample σ2 from the full conditional:

σ2 | • ∼ Inv-Gamma
(
c+ n

2 + p

2 , d+ 1
2 ‖y − β0 − αT −Xβ‖+ 1

2β
∗′D−1β∗

)
(3.32)

3. Sample γj from Bernoulli distribution with the mean parameter:

l1j
l1j + l0j

(3.33)

where l1j and l0j are defined as in (3.30).

4. Sample θ based on a Metropolis-Hastings algorithm:

p(θ | •) ∝ θa+
∑p

j=1 ωjγj(1− θ)b
p∏
j=1

(1− θωj)(1−γj) (3.34)

5. Update τ 2
j

Denote Q the diagonal matrix with diagonal elements {τ 2
j }

p
j=1, (3.25) is equivalent to

β | σ2,Q ∼ Normal
(
0, σ2Q

)
(3.35)

Similar to the case of SSVS priors, we now consider some appropriate priors for τj.
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3.3.1 Spike and Slab with Normal prior

We simply fix τj = 9 ∀j = 1, p, thus leading to Normal priors on each bj.

3.3.2 Spike and Slab with Laplace prior

To obtain Laplace prior for each bj, we set the following hierarchical prior for τj

τ 2
j ∼

λ2

2 e
−λ2τ2

j /2dτ 2
j

λ2 ∼
(
λ2
)r−1

e−δλ
2
dλ2

The conditional posteriors of the hyper-parameters are of the form

1
τ 2
j

| • ∼ Gaussian
(√

λ2σ2/β2
j , λ

2
)

λ2 | • ∼ Gamma
 p∑
j=1

γj + r,
p∑
j=1

τ 2
j γj/2 + δ


Note: We fix r = 1 and δ = 3.
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SIMULATION STUDY

4.1 Overview

Aim

This Monte Carlo study aims to assess the finite-sample performance of different regularization-
based methods (Frequentist and Bayesian) for inference on the treatment effect in an obser-
vational study with high-dimensional controls. We focus on a linear regression model where
the treatment variable Ti is taken as exogenous after conditioning control variables (.i.e.
Unconfoundenedness holds).

yi = αTi +X iβ + εi, ∀i = 1, . . . , n (4.1)

where yi is the outcome, Ti is the scalar treatment variable, and Xi is a p-dimensional row
vector of potential control variables of subject i (p is comparable or even larger than n).

Estimand

Our estimand α is the regression coefficient of the treatment variable Ti, which would repre-
sent the average treatment effect in an observational study (under satisfactions of assump-
tions specified in section 2.1).

37
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Method implementations

We use nine methods designed in section 3 to analyze each simulated dataset. These methods
are consist of PDSLasso, SSVSNormal, SSVSStudent, SSVSLasso1, SSVSLasso2, SSVSLasso3,
SSVSHorseshoe, SnSNormal and SnSLasso. The first one represents for Frequentist ap-
proach, while the others are Bayesian counterparts (we refer as HDCA methods).

Data are simulated, and corresponding performance metrics are calculated using Matlab

[MATLAB, 2020] with ParallelComputationalToolbox for random number generation.
The simulation results are analyzed using R [R Core Team, 2020]. We describe details in the
rest of this chapter.

4.2 Data Generating Processes

We first set (n, p) = (300, 400). For simplicity, we focus on continuous treatments. The
model used to generate data is as follows:

yi = β0 + αTi + x′iβ + εi (4.2)

Ti = x′iψ + νi (4.3)

where β0 = 0 and α = 1. Set βj = cyβ̄j and ψj = ctψ̄j and choose the constants cy and ct in
order to achieve desired level of signal-to-noise ratios.

Relevant variables xij are categorized into four types:

(a) strong confounders that are strongly correlated with both Ti and yi:
set ψ̄j = 1 if j is odd (−1 if even ) and β̄j = 1 if j is odd (−1 if even),

(b) weak confounders that are strongly correlated with Ti but weakly with yi:
set ψ̄j = 1 if j is odd (−1 if even ) and β̄j = 0.3 if j is odd (−0.3 if even ),

(c) instruments that are strongly correlated with Ti but uncorrelated with yi:
set ψ̄j = 1 if j is odd (-1 if even) and β̄j = 0, and

(d) strong predictors that are strongly correlated with yi but uncorrelated with Ti:
set ψ̄j = 0 and β̄j = 1 if j is odd (-1 if even).

For irrelevant variables (noises) that do not belong to any of the four groups above, we set
ψ̄j = 0 and β̄j iid∼ N (0, 0.12).

We vary the following factors in the simulation study:
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4.2.1 Correlation among Covariates

The covariates are either uncorrelated or correlated:

(a) Uncorrelated covariates: xij iid∼ N (0, σ2
x) for all j and i.

(b) Correlated covariates: xi iid∼ N(0,Σ) for all i with Σkj = ρ|j−k|, where ρ determines
how strongly the covariates are correlated.

We fix σ2
x = 1 and ρ = 0.9.

4.2.2 Sparsity

Given q ∈ (0, 1), let [100× q × p] be the percentage of the relevant covariates which fall into
the four types defined above.

4.2.3 Error Variance

The error variances are either homoskedastic or heteroskedastic:

(a) For homoskedastic errors, let vi ∼ i.i.d. N (0, σ2
t ) and εi ∼ i.i.d. N

(
0, σ2

y

)
with

σ2
y = σ2

t = 1.

(b) For heteroskedastic errors, let vi ∼ i.i.d. N (0, σ2
t (xi)) and εi ∼ N

(
0, σ2

y (Ti, xi)
)

where σt (xi) =
√

(1+x′
iθ)2

En(1+x′
iθ)2 and σy (Ti, xi) =

√
(1+β0+αTi+x′

iθ)2

En(1+β0+αTi+x′
iθ)2 (En denotes the

empirical expectation).

4.2.4 Signal-to-noise Ratio

In a general linear regression yi = x′iβ + εi, the signal-to-noise ratio (SNR) is defined as:

SNR =

∥∥∥Σ1/2
X β

∥∥∥2

σ2 (4.4)

where σ2 is the error variance and ΣX is a p× p covariance matrix of xi. Thus,
∥∥∥Σ1/2

X β
∥∥∥2

=
β′ΣXβ measures the overall signal strength, where ‖ · ‖ is the `2 -norm.

A related quantity is R2
pop , the population value of R2, defined as SNR

1+SNR . If βj = cβ̃j for

j = 1, . . . , p for some scalar c, then c =
√

σ2

β′ΣXβ
R2

eop
1−R2

pop
. Hence, c could be chosen to achieve

a desired value of R2
pop or SNR.
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Now, let R2
t and R2

y be some pre-specified population values of R2 for the treatment and the
outcome equations, respectively. We follow Belloni et al. [2014b] to compute the constants
ct and cy. For homeskedastic case, these constants are computed according to the following
steps:

1. For given (n, p,ΣX), generate X and for a given q, define ψ̄j and β̄j for j = 1, . . . , p.

2. Given R2
t , compute ct =

√
σ2
t

ψ′ΣX
R2
t

1−R2
t
.

3. Given R2
y, compute cy =

√
σ2
y

β′ΣXβ
R2
y

1−R2
y

For heteroskedastic case, we also use the above formulas for computing the constants as if
vi and εi are homoskedastic following Belloni et al. [2014b].

4.2.5 Summary

Values of
(
q, R2

t , R
2
y

)
are chosen to define various data-generating processes (DGPs). Con-

sider the following four scenarios:

(a) uncorrelated predictors AND homoskedasticity

(b) correlated predictors AND homoskedasticity

(c) uncorrelated predictors AND heteroskedasticity

(d) correlated predictors AND heteroskedasticity

For each scenario, consider q ∈ {0.04, 0.4} and
(
R2
t , R

2
y

)
∈ {(0.2, 0.2), (0.2, 0.8), (0.8, 0.2), (0.8, 0.8)}

which gives us 8 combinations. Hence, there are 32 different DGPs in total. For each design
we run Ns = 48 Monte Carlo simulations.

4.3 Performance Metrics

Let α̂ be a point estimator of a given method. For Bayesian methods, the post median
are considered. Let Ns be the number of repeated experiments. We consider five major
performance measures as below:

1. Mean-absolute-error (MAE) : MAE = 1
Ns

∑Ns
s=1 |α̂− α| as a measure of bias

2. Root-mean-squared-error (RMSE) : RMSE =
√

1
Ns

∑Ns
s=1(α̂− α)2 as a measure of

efficiency
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3. Empirical coverage: coverage rates of 95% confidence intervals (Frequentist approach)
or posterior credible intervals (Bayesian approach), i.e. the percentage of the time that
the interval covers the true parameter. Also, the average interval lengths are reported.

4. Inclusion probability for 5 types of variable xj for j = 1, . . . , p in the final model

(a) For PDSLasso, we report 1
Ns

∑Ns
s=1 1

(
xj ∈ Î1 ∪ Î2

)
(b) For HDCA methods, we use (mean and median) posterior probability that γj = 1

and average it over Ns experiments

(c) 5 types of variable xj: Strong Confounders, Weak Confounders, Instrumental
Variables, Strong Predictors, Irrelevant Variables (Noises - j = [qp] + 1, . . . , p).

4.4 Results and Discussion

4.4.1 Initial Results

The results associated with 32 different DGPs are presented in tables in Supplementary

materials. We also visualize the calculated values in 32 ordered scenarios for each perfor-
mance criteria above to identify general patterns. Finally, we summarize initial observations
as below:

First of all, we take into account the effect of using Iterated Lasso or using Cross-Validated
Lasso in PDSLasso and HDCA methods. As it can be seen from all tables, PDSLasso with
Iterated Lasso dominates the counterpart with Cross-Validated Lasso in terms of all met-
rics: smaller absolute bias, smaller RMSE, higher coverage rate and shorter average interval
length. This differential is highly significant, thus, suggests the importance of a theory-
driven approach for selecting the penalty level proposed by Belloni et al. [2014b]. However,
the case of HDCAs is not always clear like that. Two approaches achieve quite similar bias
and RMSE. The problem is that several illogical results related to coverage rate and average
interval length exist in the case of Cross-Validated Lasso. Additionally, employing Cross-
Validated Lasso in the first step of HDCAs is much slower than using Iterated Lasso, although
the former is originally used in Antonelli et al. [2019]. Therefore, we will focus on PDSLasso

and HDCA methods with Iterated Lasso hereafter.

Secondly, the overall graphs for 32 DGPs show that heteroskedasticity almost does not
affect the criteria of interest and the relative performance amongst methods.

Thirdly, a comparison of different versions of spike-and-slab Lasso (i.e. SSVSLasso1,
SSVSLasso2, SSVSLasso3 and SnSLasso can be made straightforward from figure 4.1. We
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Figure 4.1: Performance of spike-and-slab Lasso priors

consider 4 scenarios corresponding to (R2
t , R

2
y) ∈ {(20%, 20%), (20%, 80%), (80%, 20%), (80%, 80%)}

while holding a independent and homoskedastic design with the sparsity level q = 4%. It is
evident that SSVSLasso2 and SSVSLasso3 act almost identically and outperform SSVSLasso1

and SnSLasso in all considered aspects (bias, RMSE and coverage rate). SSVSLasso1 per-
forms poorly, especially in the design with high SNR. A further inspection on tables of results
suggests that it tends to include all of the variables into the structural-form equation in the
second step, thus being closed to a naive Bayesian approach mentioned in section 2.3 and
more likely to cause severe bias. In fact, SSVSLasso1 prior is a mixture of Laplace distri-
bution in both spike and slab components with interdependent penalty parameters, which
seems less theoretically supported than the others. SSVSLasso2 involves a Laplace prior
applied on only slab component and a fixed small value τ 2

0j to obtain approximately point-
mass at 0, while SSVSLasso3 entails Laplace priors applied on spike and slab components
separately with a fixed λ1 (similar to Ročková and George [2018]’s approach). These two
versions may be linked in the sense that: “Increasing λ0, while λ1 is held fixed, corresponds
to the deployment of a sequence of SSL priors where the spike concentrates increasingly
more mass around zero, approximating the point mass spike φ0(β) = I(β = 0). Thus, the
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Spike-and-Slab LASSO can be seen as a fast computable approximation to mode detection
under the spike-and-slab mixture of a point mass at 0 and a diffuse heavy-tailed slab, which
is often considered as the Bayesian ideal [Castillo and van der Vaart, 2012]”; hence, more
suitable to achieve sparsity. SnSLasso is a special case of [Xu and Ghosh, 2015](?). This
phenomenon is stable across 32 different scenarios so that we can select SSVSLasso3 as the
“winner” of this group for the sake of simplicity.

Taken together, it is sufficient for us to restrict our attention to 16 DGPs (homoskedastic
designs) and a smaller set of methods without losing some key observations.

4.4.2 Key Observations

We proceed analyzing results by performance metrics for six methods: PD Lasso with Iter-
ated Lasso for selection in each steps, and HDCA methods associated to five spike-and-slab
priors comprising SSVSNormal, SSVSStudent, SSVSLasso3, SSVSHorseshoe and SnSNormal

(with Iterated Lasso in the first step). In each of following graphs, the horizontal strips
indicate a triple sparsity level - SNR for the treatment equation - SNR for the structural
equation, e.g. 4%-20%-20% means q = 4% − R2

t = 20% − R2
y = 20%. The vertical strips

indicate whether the scenario is independent (iid) or correlated (corr) design (given ho-
moskedastic (homosk) design as our concern). Both high-sparsity setting (q = 4%) and
low-sparsity setting (q = 40%) are illustrated. For each performance criterion, an axis limit
is keep unchanged throughout different plots to facilitate overall comparisons.

High-sparsity designs

Figure 4.2 describes the bias of estimation results provided by six methods. Each dot with
the error bar reflects an estimate accompanied by its 95% confident (credible) interval, while
the red dashed line presents the true value of treatment effect τ = 1. PDSLasso provides
smallest bias in cases of independent design with high SNR in the first stage (R2

t = 80%)
and correlated design with low SNR in the first stage (R2

t = 20%), as well as outperforms
other methods across different scenarios. Only SSVSHorseshoe and SnSNormal can produces
the comparable bias with PDSLasso when SNR are low in both equations (R2

t = R2
t = 20%).

Higher SNR in the second stage (R2
y = 80%) entails larger standard errors of all methods. In

terms of standard errors, SSVSHorseshoe, SSVSNormal and SSVSLasso3 are almost better
than PDSLasso in the considered DGPs.

The above evaluations are also confirmed in figure 4.3, which illustrates the RMSE of
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Figure 4.2: The absolute bias of six methods in homoskedastic and high-sparsity designs

estimation results provided by six methods. Higher SNR in the structural model (R2
y = 80%)

tends to enlarge the RMSE of all methods. While there is no winner, SSVSHorseshoe once
again performs most poorly compared to others.

Figure 4.4 illustrates the trade-off between the coverage rate and the average interval
length. SSVSStudent has the highest coverage rate in most of scenarios, except for the case
of high SRN (R2

t = R2
y = 80%) where it is overcame by PDSLasso. Nonetheless, SSVSStudent

also involves a larger average interval length length compared to other methods. By con-
trast, SSVSNormal and SSVSLasso3 perform similarly (SSVSLasso3 is slightly better) when
producing smaller average interval length at the cost of lower coverage rate. SSVSHorseshoe

is a dismal one which never reachs the nominal coverage rate. PDSLasso has the most stable
performance. In its worst situation, i.e. the correlated design with high SNR in the first
stage (R2

t = 80%), its coverage rate is still above 65%.
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Figure 4.3: RMSE of six methods in homoskedastic and high-sparsity designs

Figure 4.4: Coverage rate and average confidence interval length of six methods in ho-
moskedastic and high-sparsity designs
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Low-sparsity designs

When the design deviates from high-sparsity, the performance of all methods deteriorates.
We now consider low-sparsity scenarios when q = 40%; the absolute bias, the coverage rate,
and the RMSE are summarized in figures 4.5, 4.6 and 4.7, respectively.

Figure 4.5: The absolute bias of six methods in homoskedastic and low-sparsity designs

Specifically, all methods suffer from the lack of sparsity, but this effect is still moderate in
the case of low SRNs in both treatment equation and structural equation (R2

t = R2
y = 20%).

Let high-sparsity settings be the benchmarks; the most challenging situation comes to all
methods when R2

t = R2
y = 80%: absolute bias amplifies, coverage rate drops to 0, and RMSE

rises significantly. This phenomenon is expected by Belloni et al. [2014b] since PDSLasso

requires a certain level of sparsity to become uniformly valid. In fact, it can be seen from
figure 6 that PDSLasso sometimes is dominated by all HDCA methods in terms of coverage
rate or average confidence interval length. However, when low sparsity is coupled with high
SRN, none of the methods could achieve the nominal coverage rate. We will discuss this in
more detail below.



CHAPTER 4. SIMULATION STUDY 47

Figure 4.6: Coverage rate and average confidence interval length of six methods in ho-
moskedastic and low-sparsity designs

Figure 4.7: RMSE of six methods in homoskedastic and low-sparsity designs
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Inclusion Probability

Looking at the inclusion probability can give us some insights into the cause of different
performance among the above methods. For PDSLasso, the inclusion probability of each
variable is the percentage of the time that this variable is included in the final structural
model, i.e. it is selected from either treatment equation or outcome equation. For HDCA

methods, we consider the posterior inclusion probability of each variable in the final model,
i.e. the probability this variable enters the slab.

Figure 4.8: Average inclusion probability of different types of variables in high-sparsity
designs

Figure 4.8 indicates the average inclusion probability of different types of variables across
16 low-sparsity designs. A confounder is associated with both the treatment variable of
interest and the outcome; then, the treatment coefficient can change considerably when
this type of variable is added to the model. As shown in figure 4.8, strong confounders
have the highest chance of being selected compared to others, whilst weak confounders are
chosen with less frequency. A strong predictor is unrelated to the treatment but is highly
associated with the outcome variable. Adding this type of variable to the model does not
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systematically change the regression coefficient of the treatment variable, but sometimes
adding this variable will absorb some of the “noise” (i.e. residual variance) in the outcome,
resulting in more precise (i.e. lower standard error) estimation of the treatment coefficient.
From figure 4.8, strong predictors often rank second in terms of being selected. It can be
explained by the fact that the final step of every HDCA method is estimating the structural
equation. An instrumental variable is related to the treatment variable but unrelated to the
outcome. Adding this type of variable is usually a bad idea: it doesn’t improve anything
about the model, but it may result in less precise (i.e. higher standard error) estimation of
the treatment coefficient as it steals variance from the treatment variable itself. As shown in
figure 4.8, instrumental variables have a similar inclusion probability to weak confounders in
most methods. These variables are initially selected along with confounders in the first step
with Lasso in all methods, and some of them remain after estimation in the final structural
equation.

SSVSStudent performs very well in terms of selecting confounders, but at the same time
it incorporates many non-confounding variables into slab.1. This explains why SSVSStudent

could obtain good coverage rate yet entailing a high variance/average interval length.2

By contrast, SSVSLasso3, By contrast, SSVSLasso3 and SSVSNormal (perform similarly)
are good at excluding non-confounding variables, but simultaneously including less con-
founders. This implies their small average interval length as a trade-off of low coverage rate.
SSVSHorseshoe and SnSNormal are somewhere in between. The stability (and superiority,
sometimes) of PDSLasso could be also justified by the inclusion probability. Post-double-
selection procedure helps PDSLasso to outperform SSVSLasso3 and SSVSNormal with re-
spects to choosing both strong and weak confounders, while dominating SSVSStudent in
terms of precluding non-confounding variables.

Deviating from the high-sparsity context, figure 4.9 demonstrates the average inclusion
probability of different variable types across 16 low-sparsity designs. Unsurprisingly, the
inclusion probability of all methods drops considerably (especially in the case of PDSLasso).
Also, strong confounders are no longer the dominants among different types of variables in
the model. As a consequence, the performance of all methods deteriorates.

1This phenomenon is similar to SSVSLasso1. It seems to be a result of putting interdependent hyperpa-
rameters, τ2

0j = 0.001× τ2
1j .

2The Student-t prior is unbounded near κ = 0, reflecting its heavy tails, i.e. it allows strong signals to
remain large. But it is bounded near κ = 1, limiting it ability to shrink noise components back to zero.
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Figure 4.9: Average inclusion probability of different types of variables in low-sparsity designs



CHAPTER

FIVE

EMPIRICAL ILLUSTRATION

5.1 Overview

This section aims to illustrate an economic empirical example when we are interested in
inference on treatment effects from an observational study using a linear regression model
under the Unconfoundedness assumption. In the previous section, we have conducted a sim-
ulation study to evaluate the regularization-based methods for causal inference from both
Frequentist and Bayesian perspectives. These methods are now considered in parallel with a
traditional ad hoc approach in the revisited observational study: Media and Political Persua-
sion: Evidence from Russia [Enikolopov et al., 2011]. This paper is published in American
Economic Review, and supplementary materials (data and STATA codes) for replication pur-
poses could be found online. In the following, we first review Enikolopov et al. [2011]’s study
of the impact of mass media on political outcomes briefly and then illustrate the use of the
considered methods. The new analysis is implemented using Stata [StataCorp, 2021] and
Matlab [MATLAB, 2020].

5.2 Description of Original Analysis

Summary

Enikolopov et al. [2011] investigate the causal effect of the only independent national TV
channel, NTV, on voting behaviour during the Russian 1999 parliamentary elections. Despite
the overall success of the newly created pro-government Unity Party (with Putin V.) in

51



CHAPTER 5. EMPIRICAL ILLUSTRATION 52

the 1999 election, the success was far from uniform across the country. These authors
conjecture that massive support from state-owned TV channels caused the rise of Unity. To
a large extent, these differences might be explained by the variation in voters’ access to an
independent media outlet in different parts of the country. 1 Albeit they take account of
both aggregate-level effects and individual-level effects, we only focus on the former: the
impact of NTV availability on the official electoral results throughout subregions.

Hypotheses

The 1999 election campaign was the only time in Russia’s political history when different TV
channels had different political orientations: the pro-government Unity Party was opposed
by NTV (“Independent TV”) relative to the two main state-controlled TV channels, while
the centrist opposition OVR party and liberal opposition SPS and Yabloko parties were
supported by NTV relative to the two state-controlled TV channels. At the same time,
approximately three-fourths of Russia’s population had access to NTV and can watch two-
sided political news, while one-fourth of voters located in parts of the country where NTV
was not accessible were exposed to only one-sided media coverage of the election campaign.
Therefore, three main hypotheses are proposed as below:

• There is a significant positive effect of the availability of NTV on voting for all parties
supported by NTV (centrist opposition OVR and liberal opposition Yabloko and SPS).

• There is a significant negative effect of NTV availability on the vote for pro-government
Unity, which was criticized by NTV and praised by the other national TV channels.

• The prediction about the effect of NTV on voter turnout is ambiguous.

Identification strategy and Data

There is a fundamental problem in estimating the causal impact of NTV availability on
aggregate voting outcomes: NTV availability during this period were not randomly assigned
among subregions. In fact, certain factors may be associated with both state-level NTV
availability and state-level voting outcomes. Failing to control for these factors will then
lead to omitted variables bias. To address these potential confounding factors, Enikolopov

1Indeed, if the governing party controls all major media sources, access to an alternative source of infor-
mation can be important in helping people to make informed choices.
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et al. [2011] introduce the following baseline cross-sectional specification (a linear constant-
effect causal model):

votejs,1999 = β0 + β1NTVs,1999 + ηjs (5.1)

= β0 + β1NTVs,1999 + β′2Xs,1995 + β′3Es,1998 + δr + εjs (5.2)

where:

• votejs,1999 is the percent of votes for party j in subregion s at the 1999 Duma elections

• NTVs,1999 is the predicted NTV availability in subregion s in 1999 - based on data on
the location and power of NTV transmitters in the respective subregion with a probit
regression:

Pr {NTV_availablei = 1} = Φ
(

0.008
[0.00069]

× Signal_strengthi + 0.654
[0.039]

)

• Xs,1995 is a vector of electoral outcomes of subregion s in 1995 elections

• Es,1998 is a set of socioeconomic characteristics of subregion s measured in 1998

• δr are region fixed effects

• Standard errors εjs are adjusted to allow for clusters within each region.

It bears emphasizing that Unconfoundedness is the key assumption here so that β1 has
a causal interpretation: the observable characteristics controlled in (5.2) are the only reason
why ηjs and NTVs,1999 are correlated. Intuitively, “voters in the locations with and without
access to NTV are similar in all unobserved characteristics that may drive their voting
behaviour once we control for observable differences between these locations.”2 Typically, we
cannot verify this assumption exactly. Enikolopov et al. [2011] employ a range of sensitivity
analysis techniques to support this argument, such as a placebo experiment 3 in which they
estimate the effect of the main explanatory variable, i.e., NTV availability in 1999, on the
voting behaviour in 1995 (instead of 1999 as in their baseline specification). Despite these

2the availability of NTV was idiosyncratic conditional on observables, i.e., there are no unobserved char-
acteristics of subregions correlated with NTV availability that could drive the observed differences in voting
behaviour.

3There are two potential reasons why this assumption may not hold. First, there might be reverse
causality, as subregions with certain political preferences could be more likely to receive NTV. Second, there
might have been some omitted characteristics of subregions that correlated both with the presence of the
NTV signal and the political preferences of the population.
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noteworthy attempts, one drawback of the approach is that neither Unity nor OVR - two
major parties expected to be influenced by NTV the most - were present at the time of the
1995 elections; hence the validity of Unconfoundedness is not fully checked. As a result,
the plausibility of Enikolopov et al. [2011]’s identification strategy relies strongly on their
specification of a control-variable set. This fact directs our attention towards Enikolopov
et al. [2011]’s rationale when choosing controls in (5.2):

• The vector of socioeconomic controls Es,1998 in the baseline regressions includes a
dummy for cities, the fifth-order polynomial of population, the fifth-order polynomial
of average wage (as the direct determinants of NTV availability), and the number of
doctors and nurses per capita (as a proxy for the quality of public goods provision,
which can be an important determinant of voting for the pro-government party). In
addition, they verify that the results are robust to including a larger set of socioeco-
nomic controls (includes migration rate, average pension, the fraction of retired people,
the fraction of unemployed, the number of people employed in farms, and crime rate).

• They present results for each voting outcome: without and with controls for the election
results from 1995 (Xs,1995).

For aggregate analysis, the sample includes a set of from 1686 to 2005 sub-regions (each
sub-region is an observation) in 79-81 regions, depending on the specification.

This ad hoc selection procedure is not quite rare in the practice of empirical economics,
as we have mentioned in section 2.1.3. There are unclear variable choices such as the fifth-
order polynomial of population and the fifth-order polynomial of average wage rather than
other transformations. Moreover, the authors argue that the number of doctors and nurses
per capita is a proxy for the quality of public goods provision, thereby determining vote
outcome for the pro-government party. Even if that were the case, this factor might not
actually help predict voting for other parties. Imposing such fixed specifications to fit all
cases could be inflexible and sometimes problematic. We will relax these constraints in a
new analysis.

Results

The results derived by Enikolopov et al. [2011] are consistent with the above hypotheses4:
4Please see Table 2 — Effect of NTV Availability on Voting Behavior in 1999, Aggregate Data, Cross

Section
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• The vote for Unity was significantly smaller in sub-regions with higher NTV availability,
and the magnitude of the effect is the largest.

• The effect of NTV availability on the combined vote for the three opposition parties,
supported by this channel, is significantly positive.

• An increase in NTV availability leads to a decline in turnout.

5.3 New Analysis

For the new analysis, we take the argument that the NTV availability may be taken as exoge-
nous relative to voting outcomes once observables have been conditioned on from Enikolopov
et al. [2011] as given. We use the same state-level data as in NTV_Aggregate_Data.dta but
only keep observations with nonzero value for the largest set of controls stated above. There-
fore, the remained sample consists of 1586 sub-regions (observations) in 79 regions.

Departing from the original paper, this new analysis allows for a much richer set of
controls than allowed for in {Xs,1995;Es,1998; δr}. Specifically, population and average wage
are used instead of the fifth-order polynomial of population and the fifth-order polynomial of
average wage. Furthermore, all second-order polynomials of the continuous covariates (except
for logarithm of population, logarithm of wage and the population change), 78 dummies for
regions and all possible first-order interactions of non-region variables are included. After
removing collinear columns, we obtain a set of 325 control variables (maximum) as the
baseline specification to flexibly select among. With the sample of 1586 observations, we are
dealing with the data set in which p is large relative to n. Even though p < n, applying
the OLS-based methods to a specification with all 325 controls is still not applicable in this
context because of the ill-conditioned matrix issue5.

This phenomenon motivates us to apply Frequentist and Bayesian regularization-based
methods designed in section 3. Specifically, we consider Post-Double-Seclection Lasso (PDSLasso)
and High-dimensional Confounding Adjustment (HDCA) methods, which includes SSVSNormal,
SSVSStudent, SSVSLasso1, SSVSLasso2, SSVSLasso3 and SSVSHorseshoe. In all methods,
Iterated Lasso is used for Lasso-based selection steps. Table 5.1 presents the estimation
results corresponding to different dependent variables (voter turnout and voting outcomes
for major parties). For each dependent variable, we report results using regularization-based
methods on on the full set of potential controls (p = 325), regression result using OLS for
a linear regression with no control (labelled as No control in Table 5.1). We also provide

5The conditional number of X ′X is extremely large, approximate 7.46× 1022
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original results estimated by Enikolopov et al. [2011] using OLS with two sets of controls
with and without the election outcome from 1995, as discussed in section 2.1 (labelled as
Old Large and Old Small in Table 5.1).

Panel A demonstrates the estimated effect of NTV availability on voter turnout. Panel
B presents the result for Unity, the main party opposed by NTV. Panel C indicates results
for parties supported by NTV, where OVR is the main centrist opposition party. And panel
D features the effect on parties who got similar coverage by NTV and the two governmental
television channels.

First of all, we take a brief look at relative performances of the Frequentist and Bayesian
regularization-based methods in all panels. The findings confirm our analysis of behaviours
of these methods in the earlier simulation section. Only SSVSStudent suffers from the ill-
conditioned matrix issue (which hinders the use of OLS) so that nothing is estimated. It can
be explained by the pattern in the Monte Carlo study, where SSVSStudent is apt to include
the largest number of possible controls into the slab in all scenarios. Among SSVS Lasso
priors, SSVSLasso1 provides a larger credible interval length, as well as having a higher inclu-
sion probability of possible controls. SSVSLasso2 and SSVSLasso3 perform nearly identical
and produce estimates for treatment coefficients closed to SSVSNormal along with smaller
standard errors thanks to higher shrinkage effects. Relative performance of SSVSHorseshoe

is unstable in comparison with other HDCA methods. In terms of the Frequentist approach,
PDSLasso is inclined to retain a more parsimonious final set of controls than the ad hoc
approach (Column 6). The size of this set varies from party to party, especially significant
to the case of Yabloko (24 controls), which suggests the flexibility of the systematic-search
approach. Bayesian methods do not produce one specific final set; however, the parsimony
level is partly reflected in their average inclusion frequency of a potential control into the
slab (Column 7). It is worth noting that even if one variable is included in the slab, this
variable can still be shrunk; the effect depends upon the type of Bayesian shrinkage priors.
In addition, the CI length of SSVSLasso3 is always smaller than PDSLasso. This finding
is consistent with the empirical illustration of Antonelli et al. [2019]. These authors also
highlight that while the goal of Post-Double-Selection Lasso is to obtain valid inference
in high-dimensional setup, High-dimensional Confounding Adjustment with spike-and-slab
Lasso provides the more efficient estimate of the treatment effect; the reason lies in how they
address instrumental variables.
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Table 5.1. Estimation of the effect of NTV availability on voting outcomes
using Regularization-based methods

Panel A. Voter turnout in 1999

EstTE LbTE UbTE Length Potential_Set Final_Set Percentage
No control -22.924 -28.0775 -17.771 10.307 n.a. 0 n.a.
Old Small -6.540 -10.3424 -2.738 7.605 n.a. 91 n.a.
Old Large -6.670 -9.4532 -3.887 5.566 n.a. 99 n.a.
PDS Lasso -7.693 -11.4352 -3.952 7.483 325 59 18.154
SSVS Normal -5.448 -9.08 -1.533 7.547 325 n.a. 60.546
SSVS Student-t n.a. n.a. n.a. n.a. 325 n.a. n.a.
SSVS Lasso1 -5.692 -10.0455 -1.161 8.884 325 n.a. 87.287
SSVS Lasso2 -5.787 -9.2316 -2.358 6.874 325 n.a. 53.692
SSVS Lasso3 -5.805 -9.2189 -2.416 6.803 325 n.a. 53.750
SSVS Horseshoe -4.680 -8.3093 -1.027 7.282 325 n.a. 42.036

Panel B. Opposed by NTV in 1999

Vote for Unity in 1999 (centrist, progovement)
EstTE LbTE UbTE Length Potential_Set Final_Set Percentage

No control -34.397 -40.0348 -28.760 11.275 n.a. 0 n.a.
Old Small -17.720 -22.6396 -12.800 9.839 n.a. 91 n.a.
Old Large -15.480 -20.9092 -10.051 10.858 n.a. 99 n.a.
PDS Lasso -12.451 -19.1204 -5.781 13.340 325 54 16.615
SSVS Normal -15.719 -21.3826 -10.097 11.285 325 n.a. 66.248
SSVS Student-t n.a. n.a. n.a. n.a. 325 n.a. n.a.
SSVS Lasso1 -18.597 -24.7771 -12.176 12.601 325 n.a. 90.098
SSVS Lasso2 -13.355 -18.7278 -8.028 10.700 325 n.a. 59.783
SSVS Lasso3 -13.185 -18.276 -7.855 10.421 325 n.a. 60.032
SSVS Horseshoe -17.058 -22.5285 -11.803 10.725 325 n.a. 44.077
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Panel C. Supported by NTV in 1999

Vote for OVR in 1999 (centrist, opposition)
EstTE LbTE UbTE Length Potential_Set Final_Set Percentage

No control 13.209 6.6589 19.760 13.101 n.a. 0 n.a.
Old Small 5.720 1.898 9.542 7.644 n.a. 91 n.a.
Old Large 3.620 0.2488 6.991 6.742 n.a. 99 n.a.
PDS Lasso 3.171 -1.8406 8.183 10.023 325 57 17.538
SSVS Normal 3.740 -1.039 8.128 9.167 325 n.a. 62.939
SSVS Student-t n.a. n.a. n.a. n.a. 325 n.a. n.a.
SSVS Lasso1 5.403 0.3589 10.749 10.390 325 n.a. 89.590
SSVS Lasso2 3.003 -1.1865 7.293 8.479 325 n.a. 56.673
SSVS Lasso3 3.131 -0.8867 7.323 8.210 325 n.a. 57.219
SSVS Horseshoe 4.019 0.25247 7.773 7.521 325 n.a. 37.932

Vote for SPS in 1999 (liberal)
EstTE LbTE UbTE Length Potential_Set Final_Set Percentage

No control 10.556 8.1479 12.964 4.816 n.a. 0 n.a.
Old Small 4.470 2.3728 6.567 4.194 n.a. 91 n.a.
Old Large 3.520 1.266 5.774 4.508 n.a. 99 n.a.
PDS Lasso 2.538 0.72141 4.354 3.633 325 57 17.538
SSVS Normal 1.943 -0.12751 4.050 4.178 325 n.a. 45.423
SSVS Student-t n.a. n.a. n.a. n.a. 325 n.a. n.a.
SSVS Lasso1 3.147 0.90162 5.416 4.514 325 n.a. 75.375
SSVS Lasso2 1.873 0.19983 3.437 3.237 325 n.a. 32.294
SSVS Lasso3 1.869 0.17055 3.460 3.289 325 n.a. 32.108
SSVS Horseshoe 2.852 1.3537 4.345 2.992 325 n.a. 66.570

Vote for Yabloko in 1999 (liberal)
EstTE LbTE UbTE Length Potential_Set Final_Set Percentage

No control 11.742 10.2813 13.202 2.921 n.a. 0 n.a.
Old Small 4.580 2.9336 6.226 3.293 n.a. 91 n.a.
Old Large 3.850 2.5368 5.163 2.626 n.a. 99 n.a.
PDS Lasso 4.723 3.0329 6.414 3.381 325 24 7.385
SSVS Normal 3.563 2.5207 4.597 2.076 325 n.a. 16.702
SSVS Student-t n.a. n.a. n.a. n.a. 325 n.a. n.a.
SSVS Lasso1 3.987 2.147 5.810 3.663 325 n.a. 65.482
SSVS Lasso2 2.944 1.9526 3.907 1.954 325 n.a. 12.896
SSVS Lasso3 2.975 1.9262 3.925 1.999 325 n.a. 12.388
SSVS Horseshoe 3.539 2.5708 4.611 2.040 325 n.a. 93.538
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Panel D. Similar coverage by NTV and state TV in 1999

Vote for KPRF in 1999 (communist)
EstTE LbTE UbTE Length Potential_Set Final_Set Percentage

No control 0.016 -5.9546 5.987 11.941 n.a. 0 n.a.
Old Small 1.680 -2.2988 5.659 7.958 n.a. 91 n.a.
Old Large 3.920 0.2744 7.566 7.291 n.a. 99 n.a.
PDS Lasso 5.946 1.5355 10.357 8.822 325 59 18.154
SSVS Normal 6.808 2.4998 10.994 8.494 325 n.a. 61.144
SSVS Student-t n.a. n.a. n.a. n.a. 325 n.a. n.a.
SSVS Lasso1 5.988 0.91651 11.082 10.166 325 n.a. 88.089
SSVS Lasso2 6.177 2.31 10.328 8.018 325 n.a. 55.734
SSVS Lasso3 6.083 2.356 10.503 8.147 325 n.a. 56.074
SSVS Horseshoe 7.086 3.2396 11.055 7.815 325 n.a. 40.667

Vote for LDPR in 1999 (nationalist)
EstTE LbTE UbTE Length Potential_Set Final_Set Percentage

No control -5.826 -7.3941 -4.258 3.136 n.a. 0 n.a.
Old Small -1.720 -3.0136 -0.426 2.587 n.a. 91 n.a.
Old Large -1.390 -2.5856 -0.194 2.391 n.a. 99 n.a.
PDS Lasso -1.967 -3.2954 -0.638 2.657 325 63 19.385
SSVS Normal -1.820 -3.0915 -0.645 2.446 325 n.a. 26.378
SSVS Student-t n.a. n.a. n.a. n.a. 325 n.a. n.a.
SSVS Lasso1 -1.777 -3.8401 0.296 4.136 325 n.a. 69.909
SSVS Lasso2 -1.440 -2.6102 -0.271 2.340 325 n.a. 21.165
SSVS Lasso3 -1.488 -2.6108 -0.364 2.246 325 n.a. 20.123
SSVS Horseshoe -1.740 -3.0105 -0.507 2.504 325 n.a. 87.339
†Column 1 represents the estimates of treatment effect.

††Column 2 and 3 represent the lower bounds and upper bounds of 95% confidence (credible) intervals, respectively.

††Column 4 represents lengths of 95% confidence (credible) intervals.
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We are turning now to the comparison with OLS-based approaches. No control spec-
ification yields estimation results that are vastly different from others, and CI lengths are
the largest. It reflects the consequence of omitted variable bias when we ignore important
confounders. Compared to original results from intuitive specifications Old Small and Old

Large of Enikolopov et al. [2011], new methods provide results that are similar in magni-
tude and direction, except for the case of OVR. PDSLasso, SSVSStudent, SSVSLasso2 and
SSVSLasso3 (which often dominate SSVSLasso1 and Horseshoe) produce credible intervals
that encompass both positive and negative values, thereby suggesting an insignificant ef-
fect of NVT availability on vote outcome for OVR. Whereas this result deviates from the
positive effect as suggested by Enikolopov et al. [2011], there are several possible explana-
tions. First, the original estimates seem quite sensitive because of large standard errors.
Additionally, there is no sensitivity analysis to verify its robustness since OVR did not exist
in the preceding periods. Notwithstanding the inconsistency, this ambiguous effect on the
major party supported by NTV does not contradict theoretical and empirical evidence that
negative political advertising is often more effective than positive.

Fairly speaking, there is no reason to argue that new estimates from regularization-based
methods are more reliable than the initial results because performances of these methods
hinge on particular designs. For example, as shown in the simulation study, all examined
methods might perform poorly in low-sparsity scenarios. Nevertheless, regularization-based
methods complement the usual careful specification analysis by providing a researcher with
an efficient, data-driven way to search for a small set of influential confounders from a
sensibly chosen vast set of potential control variables.

To make the problem further appealing, we generate a high-dimensional setting by draw-
ing random sub-samples of size 300 observations with replacement from the full data set
(1568 observations) and implementing estimation throughout 100 simulation repetitions.
Unfortunately, this design exaggerates the ill-posed problem so that PDSLasso and all HDCA

methods become not applicable.
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CONCLUSION

The goal of this thesis was to examine the merits of Frequentist and Bayesian regularization-
based methods to inference on treatment effects with high-dimensional controls. We have
considered the Post-Double-Selection Lasso [Belloni et al., 2014b] and several Bayesian meth-
ods corresponding to a variety of Bayesian shrinkage choices within a common framework -
the generalized High-dimensional Confounding Adjustment approach [Antonelli et al., 2019].

The main findings from the simulation study and the empirical illustration implemented
in this thesis are as follows:

At the beginning, we have considered the high dimensional econometric settings where the
number of potential control variables (p) is very close to or even larger than the number
of observations (n). Within this context, a traditional approach such as the OLS method
fails to provide reliable results. In specific, in our Monte-Carlo study when p = 400 is larger
than n = 300, the OLS estimator for the treatment effect in a full-control specification is not
identified. In our empirical example with a real data-set where p = 325 is comparable yet still
smaller than n = 1568 (i.e. a full rank setting), the OLS estimator becomes very imprecise
because of the ill-posed problems. In contrast, estimators associated with regularization-
based methods can be computed and perform well in many setups in terms of achieving the
nominal coverage rate. Therefore, the advantages of modern methods in comparison with
traditional counterparts in high-dimensional scenarios are undeniable.

Regarding the relative performances among regularization-based methods, the conclusion
depends on the context. As shown in the simulation study, PDSLasso dominates HDCA meth-
ods in high-sparsity designs thanks to its stable performance (lower bias and safer coverage
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rate). However, in low-sparsity designs, PDSLasso fails to select confounders and performs
the worst. Regarding the empirical illustration, PDSLasso provides the estimates qualita-
tively consistent with SSVSLasso2, SSVSLasso3 and SSVSNormal; while the length of 95%
confidence (credible) interval of PDSLasso is always larger than that of SSVSLasso3. In terms
of implementation, HDCA methods require MCMC samplings, thereby being more computa-
tional intensive compared to PDSLasso.

Among HDCA methods, the performance depends upon the choices of Bayesian shrinkage
priors as well as the penalty parameters. There are some general patterns realized in this
analysis. SSVSStudent and SSVSLasso1 tend to produce relatively large standard errors
(and large average interval length as a result).While it can be seen as a trade-off for the
highest coverage rates of SSVSStudent in the Monte-Carlo study, this method ranks lowest
in the empirical replication because it is the only one that suffers from the ill-posed prob-
lem and estimates nothing. SSVSLasso2 and SSVSLasso3 share almost identical behaviours
and perform quite similar to SSVSNormal. Although they cannot achieve the high coverage
rates as SSVSStudent, their small standard errors are desirable in both simulation and em-
pirical examples. SSVSHorseshoe often produces the highest bias and RMSE in simulation
designs and does not show any clear behaviour in a real dataset. In terms of variants of
spike-and-slab [Kuo and Mallick, 1998], SnSNormal and SnSLasso present a medium perfor-
mance so they are not considered in the empirical part. Insights from inclusion probability
could serve as quite convincing explanations. SSVSStudent and SSVSLasso1 are good at se-
lecting confounders, but simultaneously include highest number of non-confounding factors.
By contrast, SSVSLasso2, SSVSLasso3 and SSVSHorseshoe perform well in excluding non-
confounding factors, but at the same time, they select less confounders into slab. Notably,
although some DGP parameters can influence the isolate performance of each method (e.g.
higher SNR in the second stage deteriorates the performance of each method), the relative
pattern described above is quite robust across different scenarios.

Finally, regularization-based methods should not be regarded as panaceas, according to the
results of this study. The Monte-Carlo study reveals that there are designs in which even
well-known theory-based methods like PDSLasso could show poor finite-sample performance,
e.g. low-sparsity designs. Although outperforming PDSLasso in such cases, new Bayesian
methods are still far from the desired target. Evidence from the empirical example even
poses a more challenging situation. SSVSStudent cannot overcome the problem that drowns
traditional approaches (ill-posed problem/ multicollinearity even when p < n). Moreover,
when multicollinearity is compounded with n < p, every method considered in this study
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fail to estimate treatment effects.1

These findings, while preliminary, have some implications for further studies in developing
the Bayesian regularization-based methods for inference on treatment effects with high-
dimensional controls:

With respect to methodology, this study confirms that there is a link between the finite-
sample performance in variable selection and in causal inference of Bayesian methods. Since
the choice of Bayesian shrinkage prior could affect variable-selection performance[Van Erp
et al., 2019, Polson and Sokolov, 2019], this may influence the causal-inference performance of
a method as well. The Bayesian approach offers a huge choice of shrinkage priors, thus being
potential for new methods. However, a thoughtful implementation is required. For example,
Horseshoe prior, which is novel in the Bayesian literature, does not ensure that SSVSHorshoe

could perform well in our settings. In fact, the most stable performance in our case belongs
to priors which have good established theoretical results - SSVSNormal [Narisetty and He,
2014] and SSVSLasso3 [Ročková and George, 2018]. Even if that were the case, the values of
hyper-parameters cannot be neglected. The ability to account for parameter uncertainty of
Bayesian methods are often sensitive to those factors, which remains a challenging aspect.

With regards to the simulation study, future research could refine our design by elaborating
some parameters which seem to be important in this thesis: sparsity levels, signal-to-noise
ratio in both equations. A range of other parameters such as the number of observations,
specific hyper-parameters, etc. should be considered as well. Especially, a more sophisticated
correlation design is necessary since the issue in our empirical illustration is not well captured
by the current Monte-Carlo study. Furthermore, semi-synthetic designs are encouraged.

Regarding implications for empirical works in economics, the findings suggest that Fre-
quentist and Bayesian regularization-based methods offer a coherent data-driven comple-
ment to ad hoc robustness checks, thus, support causal analysis in linear regression models2.
However, the scope of this thesis is limited since it is only a special case of a special case of
inference on treatment effects:

First, there are some implicit restrictions on the set of potential controls. Although this
study discusses about selecting among controls, the set of potential controls is assumed
to be “not bad”, e.g. it at least does not contain pre-treatment variables, to enable the
equivalent between the causal estimand ATE and the regression coefficent α in section 2.1.

1For further research: Yue et al. [2019], Celeux et al. [2012],etc.
2This is in light with Angrist and Frandsen [2019], Belloni et al. [2014b], etc. See Wuthrich and Zhu

[2019] for caveats.
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Distinguishing “good” from “bad” controls remains ambiguous, therefore, a future research
in modern methods should pay more systematic attention to moderate the idea of Directed
Acyclic Graphs (DAGs) [Cinelli et al., 2020, VanderWeele, 2019] .

Second, this study is based on the Unconfoundedness assumption to focus on a linear re-
gression model with conditional-on-observables identification strategy to carry out estima-
tion and inference on treatment effects. That appears a simplest form in the literature of
causal inference, thus, a future study could examine the merits of Frequentist and Bayesian
regularization-based methods in settings which allow for unmeasured confounding factors3.

Finally, machine labor cannot replace brain power. It is evident that the methods introduced
in this study are potential yet far from the cure-all. New methods should be applied with
inference in mind, to quantify our degree of confidence, also importantly, our degree of
uncertainty./

3For further research: Abadie and Cattaneo [2018], Athey and Imbens [2017], Belloni et al. [2017], etc.
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